Log in

Three-Dimensional Finite Element Analysis and Comparison of a New Intramedullary Fixation with Interlocking Intramedullary Nail

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

This study was set to introduce a new intramedullary fixation, explore its biomechanical properties, and provide guidance for further biomechanical experiments. With the help of CT scans and finite element modeling software, finite element model was established for a new intramedullary fixation and intramedullary nailing of femoral shaft fractures in a volunteer adult. By finite element analysis software ANSYS 10.0, we conducted 235–2,100 N axial load, 200–1,000 N bending loads and 2–15 Nm torsional loading, respectively, and analyzed maximum stress distribution, size, and displacement of the fracture fragments of the femur and intramedullary nail. During the loading process, the maximum stress of our new intramedullary fixation were within the normal range, and the displacement of the fracture fragments was less than 1 mm. Our new intramedullary fixation exhibited mechanical reliability and unique advantages of anti-rotation, which provides effective supports during fracture recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Cheung, G., Zalzal, P., Bhandar, M., et al. (2004). Finite element analysis of a femoral retrograde intramedullary nail subject to gait loading. Medical Engineering & Physics, 26(2), 93–108.

    Article  CAS  Google Scholar 

  2. Eveleigh, R. J. (1995). A review of biomechanical studies of intramedullary nails. Medical Engineering & Physics, 17(5), 323–331.

    Article  CAS  Google Scholar 

  3. Palmer, R. H. (1999). Biological osteosynthesis. Veterinary Clinics of North America, 29(5), 1171–1185.

    Article  CAS  PubMed  Google Scholar 

  4. Schemitsch, E. H., Kowalski, M. J., Swiontkowski, M. F., et al. (1996). Soft tissue blood flow following reamed versus undreamed locked intramedullary nailing: A fractured sheep tibia model. Annals of Plastic Surgery, 36(1), 70–75.

    Article  CAS  PubMed  Google Scholar 

  5. Kutscha-Lissberg, F., Hopf, F. K., Kolling, E., et al. (2001). How risky is early intramedullary nailing of femoral fractures in polyraumatized patients. Injury, 32(4), 289–293.

    Article  CAS  PubMed  Google Scholar 

  6. Blum, J., Romments, P. M., & Janzing, H. (1997). The unreamed humeral nail—A biological osteosynthesis of the upper arm. Acta Chirurgica Belgica, 97(4), 184–189.

    CAS  PubMed  Google Scholar 

  7. Cheung, G., Zalzal, P., & Bhandari, M. (2004). Finite element analysis of a femoral retrograde intramedullary nail subject to gait loading. Medical Engineering & Physics, 26(2), 93–108.

    Article  CAS  Google Scholar 

  8. Perez, A., Mahar, A., Negus, C., et al. (2008). A computational evaluation of the effect of intramedullary nail material properties on the stabilization of simulat-ed femoral shaft fractures. Medical Engineering & Physics, 30(6), 755–760.

    Article  Google Scholar 

  9. Taylor, M. E., Tanner, K. E., Freemen, M. A., et al. (1996). Stress and strain distribution within the intact Femur: compression or bending. Medical Engineering & Physics, 18, 122–131.

    Article  CAS  Google Scholar 

  10. Wang, J., Yang, T., Zhong, F., et al. (2005). Finite element analysis of biomechnicals of human femur. Chinese Journal of Orthopaedic Trauma, 10, 931–934.

    Google Scholar 

  11. Avval, P. T., Klika, V., & Bougherara, H. (2014). Predicting bone remodeling in re-sponse to total hip arthroplasty: computational study using mechanobiochemical model. Journal of Biomechanical Engineering, 136, 051002.

    Article  Google Scholar 

  12. Zhu, X., Su, J., & Guo, T. (2001). the application of numerical simulation of bone surface reconstruction femoral head prosthesis in the optimal design. Chinese Journal Of Biomedical Engineering, 20, 560–565.

    Google Scholar 

  13. Lengsfeld, M., Burchard, R., Günther D. et al. (2005). Femoral strain changes after total hip arthroplasty-patient-specific finite elementanalyses 12 years after operation. Medical Engineering & Physics ,27(8), 649–654.

  14. Koch, J. C. (1917). The law of bone architecture. American Journal of Anatomy, 21, 177–298.

    Article  Google Scholar 

  15. Visuri, T., & Hietaniemi, K. (1992). Displaced stress fracture of the femoral shaft: a report of three cases. Military Medicine, 157(6), 325–327.

    CAS  PubMed  Google Scholar 

  16. Burkhart, T. A., Andrews, D. M., & Dunning, C. E. (2013). Finite element modeling mesh quality, energy balance and validation methods: A review with recommendations associated with the modeling of bone tissue. Journal of Biomechanics, 46(9), 1477–1488.

    Article  PubMed  Google Scholar 

  17. Ma, J., Ma, X., Zhang, Q., et al. (2008). Three-dimensional finite element analysis of femur’s biomechanics in normal standing position. Journal of Clinical Rehabilitative Tissue Engineering Research, 12(35), 6823–6826.

    Google Scholar 

  18. Lengsfeld, M., Schmitt, J., Alter, P., Kaminsky, J., & Leppek, R. (1998). Comparision of geometry-based and CT voxel-based finite element modelling and experimental validation. Medical Engineering & Physics, 20(7), 515–522.

    Article  CAS  Google Scholar 

  19. Papini, M., Zdero, R., Schemitsch, E. H. et al. (2007). The biomechanics of human femursin axial and torsional loading: comparison of finite element analysis, human cadaver-ic femurs, and synthetic femurs. Journal of Biomechanical Engineering, 129(1),12–19.

  20. Zdero, R., Bougherara, H., Dubov, A. et al. (2010). The effect of cortex thickness on intact femur biomechanics: a comparison of finite element analysis with synthetic femurs. Proceedings of the Institution of Mechanical Engineers H, 224(7), 831–840.

  21. Mow, V. C., Huiskes, R. (2009). Basic orthopaedic biomechanics and Mechano-Biology. Philadelphia: Lippincott Williams & Wilkins.

  22. Larsson, S., Kim, W., Caja, V. L., et al. (2001). Effect of early axial dynamization on tibial bone healing: a study in dogs. Clinical Orthopaedics and Related Research, 388, 240–251.

    Article  PubMed  Google Scholar 

  23. Gimens, M. S., Albareda, J. A., Vernet, J. M. C., et al. (1997). Biomechanical study of Grosse-Kempf femoral nail. International Orthopaedics, 21(2), 115–118.

    Article  Google Scholar 

  24. Cheung, G., Zalzal, P., Bhandari, M., et al. (2004). Finite element analysis of a femoral retrograde intramedullary nail subject to gait loading. Medical Engineering & Physics, 26(2), 93–108.

    Article  CAS  Google Scholar 

  25. Luo, X., Qiu, G., & Liang, G. (2008). Intramedullary fixation by intramedullary nail (2nd ed.). Bei**g: People’s medical publishing house co. ltd.

    Google Scholar 

  26. Allen, J. C, Jr, Lindsey, R. W., Hipp, J. A., et al. (2008). The effect of retained intramedullary nails on tibial bone mineral density. Clinical Biomechanics, 23(6), 839–843.

    Article  PubMed  Google Scholar 

  27. Antekeier, S. B., Burden, R. L, Jr, Voor, M. J., et al. (2005). Mechanical study of the safe distance between distal femoral fracture site and distal locking screws in antegrade intramedullary nailing. Journal of orthopaedic trauma, 19(10), 693–697.

    Article  PubMed  Google Scholar 

  28. Taylor, W. R., Roland, E., Ploeg, H., et al. (2002). Determination of orthotropic bone elastic constants using FEA and modal analysis. Journal of Biomechanics, 35(6), 767–773.

    Article  CAS  PubMed  Google Scholar 

  29. Blemker, S. S., Asakawa, D. S., Gold, G. E., et al. (2007). Image-based musculoskeletal modeling: applications, advances, and future opportunities. Journal of Magnetic Resonance Imaging, 25(2), 441–451.

    Article  PubMed  Google Scholar 

  30. Shih, K. S., Hsu, C. C., & Hsu, T. P. (2012). A biomechanical investigation of the effects of static fixation and dynamization after interlocking femoral nailing: a finite element study. Journal of Trauma and Acute Care Surgery, 72, E46–E53.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-ling Feng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Cc., **ng, Wz., Zhang, Yx. et al. Three-Dimensional Finite Element Analysis and Comparison of a New Intramedullary Fixation with Interlocking Intramedullary Nail. Cell Biochem Biophys 71, 717–724 (2015). https://doi.org/10.1007/s12013-014-0254-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-014-0254-4

Keywords

Navigation