Log in

2,3,4′,5-Tetrahydroxystilbene-2-O-β-D-glucoside Suppresses Expression of Adhesion Molecules in Aortic Wall of Dietary Atherosclerotic Rats and Promonocytic U937 Cells

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

We sought to investigate whether TSG suppressed the ICAM-1/VCAM-1 expression in dietary atherosclerotic rats and in Ox-LDL-induced U937 cells. For this purpose, 60 male Sprague–Dawley rats were randomly-and-equally divided into six groups. Atherosclerosis was induced by feeding rats a hyperlipidemic diet. TSG (120, 60 or 30 mg/kg/day) was administered by oral gavage. Simvastatin (2 mg/kg/day) was administered as positive control whereas physiological saline (0.9 % NaCl) served as untreated control. After 12 weeks, rats were euthanized by ethyl carbonate (1,200 mg/kg) and aortic wall samples were collected. Besides, U937 cells were stimulated for 48 h by Ox-LDL (80 μg/mL) with and without TSG (120, 60, 30 μg/L) or simvastatin (100 μg/L). ICAM-1/VCAM-1 mRNA expression was determined by RT-PCR and protein expression was detected by immunohistochemistry and/or western blotting. The data show that ICAM-1/VCAM-1 mRNA/protein expression was significantly enhanced in atherosclerotic aortas compared with normal diet group. Ox-LDL-induced ICAM-1/VCAM-1 mRNA/protein expression in U937 cells. Importantly, TSG significantly inhibited ICAM-1/VCAM-1 expression in atherosclerotic aortas in a dose-dependent manner. TSG-pretreatment also inhibited ICAM-1/VCAM-1 expression in Ox-LDL-induced U937 cells. Therefore, we concluded that TSG suppressed the expression of adhesion (ICAM-1/VCAM-1) molecules both in vivo (in aortic wall of dietary atherosclerotic rats) and in vitro (U937 cells).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zhang, W., Wang, C. H., Li, F., & Zhu, W. Z. (2008). 2,3,4′,5-Tetrahydroxystilbene-2-0-β-D-glucoside suppresses matrix metalloproteinase expression and inflammation in atherosclerotic rats. Clin. Exp. Pharmacol. Physiol., 35, 310–316.

    Article  PubMed  CAS  Google Scholar 

  2. Ross, R. (1999). Atherosclerosis—an inflammatory disease. New Engl. J. Med., 340, 115–126.

    Article  PubMed  CAS  Google Scholar 

  3. Libby, P. (2002). Inflammation in atherosclerosis. Nature, 420, 868–874.

    Article  PubMed  CAS  Google Scholar 

  4. Price, D. T., & Loscalzo, J. (1999). Cellular adhesion molecules and atherogenesis. Am. J. Med., 107, 85–97.

    Article  PubMed  CAS  Google Scholar 

  5. Springer, T. A. (1990). Adhesion receptors of the immune system. Nature, 346, 425–434.

    Article  PubMed  CAS  Google Scholar 

  6. Cominacini, L., Rigoni, A., & Pasini, A. F. (2001). The binding of oxidized low density lipoprotein (Ox-LDL) to Ox-LDL receptor-1 reduces the intracellular concentration of nitric oxide in endothelial cells through an increased production of superoxide. J. Biol. Chem., 276, 13750–13755.

    PubMed  CAS  Google Scholar 

  7. Michiels, C. (2003). Endothelial cell functions. J. Cell. Physiol., 196, 430–443.

    Article  PubMed  CAS  Google Scholar 

  8. Pearson, J. D. (1999). Endothelial cell function and thrombosis. Baillieres Best Pract. Res. Clin. Haematol., 12, 329–341.

    Article  PubMed  CAS  Google Scholar 

  9. O’Brien, K. D., Allen, M. D., McDonald, T. O., Chait, A., Harlan, J. M., & Fishbein, D. (1993). Vascular cell adhesion molecule-1 is expressed in human coronary atherosclerotic plaques. Implications for the mode of progression of advanced coronary atherosclerosis. J. Clin. Investig., 92, 945–951.

    Article  PubMed  Google Scholar 

  10. O’Brien, K. D., McDonald, T. O., Chait, A., Allen, M. D., & Alpers, C. E. (1996). Neovascular expression of E-selectin, intercellular adhesion molecule-1, and vascular cell adhesion molecule-1 in human atherosclerosis and their relation to intimal leukocyte content. Circulation, 93, 672–682.

    Article  PubMed  Google Scholar 

  11. DeGraba, T. J., Siren, A. L., Penix, L., McCarron, R. M., Hargraves, R., & Sood, S. (1998). Increased endothelial expression of intercellular adhesion molecule-1 in symptomatic versus asymptomatic human carotid atherosclerotic plaque. Stroke, 29, 1405–1410.

    Article  PubMed  CAS  Google Scholar 

  12. Manach, C., Mazur, A., & Scalbert, A. (2005). Polyphenols and prevention of cardiovascular diseases. Curr. Opin. Lipidol., 16, 77–84.

    Article  PubMed  CAS  Google Scholar 

  13. Stoclet, J. C., Chataigneau, T., & Ndiaye, M. (2004). Vascular protection by dietary polyphenols. Eur. J. Pharmacol., 500, 299–313.

    Article  PubMed  CAS  Google Scholar 

  14. Shan, L. M., Zhao, Y. L., & Zhang, J. C. (2004). The molecular mechanism of anti-artherosclerosis by the new combination of PPVP in atherosclerotic rats [In Chinese: with an English abstract]. Clin. Pharmacol. Bull., 20, 255–258.

    CAS  Google Scholar 

  15. Oyang, J. P., Wang, B. H., & Liu, Y. M. (2002). The effects and the mechanism of atherogenesis by sodium ferulate in hyperlipemia rabbits [In Chinese: with an English abstract]. Chin. Pharmacol. Bull., 18, 207–210.

    Google Scholar 

  16. Poston, R. N., Haskard, D. O., Coucher, J. R., Gall, N. P., & Johnson-Tidey, R. R. (1992). Expression of intercellular adhesion molecule-1 in atherosclerotic plaques. Am. J. Pathol., 140, 665–673.

    PubMed  CAS  Google Scholar 

  17. Ross, R. (1981). Atherosclerosis: a problem of the biology of arterial wall cells and their interactions with blood components. Arteriosclerosis, 1, 293–311.

    Article  PubMed  CAS  Google Scholar 

  18. Poston, R. N., & Johnson-Tidey, R. R. (1996). Localized adhesion of monocytes to human atherosclerotic plaques demonstrated in vitro. Am. J. Pathol., 149, 73–80.

    PubMed  CAS  Google Scholar 

  19. Marlin, S. D., & Springer, T. A. (1987). Purified intercellular adhesion molecule (ICAM-1) is a ligand for lymphocyte function-associated antigen 1 (LFA-1). Cell, 51, 813–819.

    Article  PubMed  CAS  Google Scholar 

  20. Makgoba, M. W., Sanders, M. E., Ginther Luce, G. E., et al. (1998). ICAM-1 a ligand for LFA-1 dependent adhesion of B, T and myeloid cells. Nature, 331, 86–88.

    Article  Google Scholar 

  21. Patel, S. S., Thiagarajan, R., Willerson, J. T., & Yeh, E. T. (1998). Inhibition of alpha4 integrin and ICAM-1 markedly attenuate macrophage homing to atherosclerotic plaques in ApoE-deficient mice. Circulation, 97, 75–81.

    Article  PubMed  CAS  Google Scholar 

  22. Matheny, H. E., Deem, T. L., & Cook-Mills, J. M. (2000). Lymphocyte migration through monolayers of endothelial cell lines involves VCAM-1 signaling via endothelial cell NADPH oxidase. J. Immunol., 164, 6550–6559.

    PubMed  CAS  Google Scholar 

  23. Leca, G., Mansur, S. E., & Bensussan, A. (1995). Expression of VCAM-1 (CD106) by a subset of TCR gamma delta-bearing lymphocyte clones. Involvement of a metalloprotase in the specific hydrolytic release of the soluble isoform. J. Immunol., 154, 1069–1077.

    PubMed  CAS  Google Scholar 

  24. Steinberg, D. (1997). Low density lipoprotein oxidation and its pathobiological significance. J. Biol. Chem., 272, 20963–20966.

    Article  PubMed  CAS  Google Scholar 

  25. Stewart, B. W., & Nagarajan, S. (2006). Recombinant CD36 inhibits Ox-LDL-induced ICAM-1-dependent monocyte adhesion. Mol. Immunol., 43, 255–267.

    Article  PubMed  CAS  Google Scholar 

  26. Jain, M. K., & Ridker, P. M. (2005). Anti-inflammatory effects of statins: clinical evidence and basic mechanisms. Nat. Rev. Drug Discov., 4, 977–987.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Priority Academic Program Development of Jiangsu Higher Education Institutions for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, YQ., Shen, Y., Li, F. et al. 2,3,4′,5-Tetrahydroxystilbene-2-O-β-D-glucoside Suppresses Expression of Adhesion Molecules in Aortic Wall of Dietary Atherosclerotic Rats and Promonocytic U937 Cells. Cell Biochem Biophys 67, 997–1004 (2013). https://doi.org/10.1007/s12013-013-9595-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-013-9595-7

Keywords

Navigation