Log in

Characterization of the Inhibition of Vein Graft Intimal Hyperplasia by a Biodegradable Vascular Stent

  • Original research
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Characterization of biodegradable stent vein graft thickening. Polydioxanone vascular sutures (PDSs) were used in a biodegradable arteriovenous bypass model. Twenty-four rabbits underwent carotid interposition bypass via ipsilateral jugular vein. One half received the stent (PDS group) and the remaining half a simple vein graft (controls). Group subsets received external stent removal or sham-control exploration at 4 and 12 weeks. At 4 and 12 weeks, the PDS group had significantly less medial and intimal thickening than the control group (P < 0.05), and there were fewer proliferating smooth muscle cells and extra cellular matrix formation than the control group at every interval. At 12 weeks, partial stent degradation occurred without deleterious effects. Furthermore proliferating cell nuclear antigen (PCNA), angiotensin type 1 receptor (AT1R), and transforming growth factor beta 1 (TGF-β1) levels were significantly lower than the control group. The external stent inhibited medial and intimal hyperplasia, an effect that remains after the material has completely degraded. This PDS stent is feasible option for vein grafts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wallitt, E. J., Jevon, M., & Hornick, P. I. (2007). Therapeutics of vein graft intimal hyperplasia: 100 years on. Annals of Thoracic Surgery, 84, 317–323.

    Article  PubMed  Google Scholar 

  2. Violaris, A. G., Newby, A. C., & Angelini, G. D. (1993). Effects of external stenting on wall thickening in arteriovenous bypass grafts. Annals of Thoracic Surgery, 55, 667–671.

    Article  CAS  PubMed  Google Scholar 

  3. Angelini, G. D., Lloyd, C., Bush, R., Johnson, J., & Newby, A. C. (2002). An external, oversized, porous polyester stent reduces vein graft neointima formation, cholesterol concentration, and vascular cell adhesion molecule 1 expression in cholesterol-fed pigs. Journal of Thoracic and Cardiovascular Surgery, 124, 950–956.

    Article  PubMed  Google Scholar 

  4. George, S. J., Izzat, M. B., Gadsdon, P., Johnson, J. L., Yim, A. P., Wan, S., et al. (2001). Macro-porosity is necessary for the reduction of neointimal and medial thickening by external stenting of porcine saphenous vein bypass grafts. Atherosclerosis, 155, 329–336.

    Article  CAS  PubMed  Google Scholar 

  5. Bunt, T. J. (2001). Vascular graft infections: An update. Cardiovascular Surgery, 9, 225–233.

    Article  CAS  PubMed  Google Scholar 

  6. Jeremy, J. Y., Bulbulia, R., Johnson, J. L., Gadsdon, P., Vijayan, V., Shukla, N., et al. (2004). A bioabsorbable (polyglactin), nonrestrictive, external sheath inhibits porcine saphenous vein graft thickening. Journal of Thoracic and Cardiovascular Surgery, 127, 1766–1772.

    Article  PubMed  Google Scholar 

  7. Smith, M. J., McClure, M. J., Sell, S. A., Barnes, C. P., Walpoth, B. H., Simpson, D. G., et al. (2008). Suture-reinforced electrospun polydioxanone-elastin small-diameter tubes for use in vascular tissue engineering: A feasibility study. Acta Biomaterialia, 4, 58–66.

    Article  CAS  PubMed  Google Scholar 

  8. Chow, W. N., Simpson, D. G., Bigbee, J. W., & Colello, R. J. (2007). Evaluating neuronal and glial growth on electrospun polarized matrices: Bridging the gap in percussive spinal cord injuries. Neuron Glia Biology, 3, 119–126.

    Article  PubMed  Google Scholar 

  9. Skodacek, D., Brandau, S., Deutschle, T., Lang, S., & Rotter, N. (2008). Growth factors and scaffold composition influence properties of tissue engineered human septal cartilage implants in a murine model. International Journal of Immunopathology and Pharmacology, 21, 807–816.

    CAS  PubMed  Google Scholar 

  10. Kontio, R., Ruuttila, P., Lindroos, L., Suuronen, R., Salo, A., Lindqvist, C., et al. (2005). Biodegradable polydioxanone and poly(l/d)lactide implants: An experimental study on peri-implant tissue response. International Journal of Oral and Maxillofacial Surgery, 34, 766–776.

    Article  CAS  PubMed  Google Scholar 

  11. Angelini, G. D., Izzat, M. B., Bryan, A. J., & Newby, A. C. (1996). External stenting reduces early medial and neointimal thickening in a pig model of arteriovenous bypass grafting. Journal of Thoracic and Cardiovascular Surgery, 112, 79–84.

    Article  CAS  PubMed  Google Scholar 

  12. Klesius, A. A., Konerding, M. A., Knez, P., Dzemali, O., Schmitz-Rixen, T., Ackermann, H., et al. (2007). External stenting with a new polyester mesh reduces neointimal hyperplasia of vein grafts in a sheep model. International Journal of Artificial Organs, 30, 930–938.

    CAS  PubMed  Google Scholar 

  13. **a, Z., & Triffitt, J. T. (2006). A review on macrophage responses to biomaterials. Biomedical Materials, 1, R1–R9.

    Article  CAS  PubMed  Google Scholar 

  14. Liao, S. W., Lu, X., Putnam, A. J., & Kassab, G. S. (2007). A novel time-varying poly lactic-co glycolic acid external sheath for vein grafts designed under physiological loading. Tissue Engineering, 13, 2855–2862.

    Article  CAS  PubMed  Google Scholar 

  15. Vijayan, V., Shukla, N., Johnson, J. L., Gadsdon, P., Angelini, G. D., Smith, F. C., et al. (2004). Long-term reduction of medial and intimal thickening in porcine saphenous vein grafts with a polyglactin biodegradable external sheath. Journal of Vascular Surgery, 40, 1011–1019.

    Article  PubMed  Google Scholar 

  16. Barker, S. G., Tilling, L. C., Miller, G. C., Beesley, J. E., Fleetwood, G., Stavri, G. T., et al. (1994). The adventitia and atherogenesis: Removal initiates intimal proliferation in the rabbit which regresses on generation of a ‘neoadventitia’. Atherosclerosis, 105, 131–144.

    Article  CAS  PubMed  Google Scholar 

  17. Martin, J. F., Booth, R. F., & Moncada, S. (1991). Arterial wall hypoxia following thrombosis of the vasa vasorum is an initial lesion in atherosclerosis. European Journal of Clinical Investigation, 21, 355–359.

    Article  CAS  PubMed  Google Scholar 

  18. Jeremy, J. Y., Gadsdon, P., Shukla, N., Vijayan, V., Wyatt, M., Newby, A. C., et al. (2007). On the biology of saphenous vein grafts fitted with external synthetic sheaths and stents. Biomaterials, 28, 895–908.

    Article  CAS  PubMed  Google Scholar 

  19. Khan, R., Agrotis, A., & Bobik, A. (2007). Understanding the role of transforming growth factor-beta1 in intimal thickening after vascular injury. Cardiovascular Research, 74, 223–234.

    Article  CAS  PubMed  Google Scholar 

  20. Schmidt, A., Lorkowski, S., Seidler, D., Breithardt, G., & Buddecke, E. (2006). TGF-beta1 generates a specific multicomponent extracellular matrix in human coronary SMC. European Journal of Clinical Investigation, 36, 473–482.

    Article  CAS  PubMed  Google Scholar 

  21. Yao, E. H., Fukuda, N., Ueno, T., Matsuda, H., Nagase, H., Matsumoto, Y., et al. (2009). A pyrrole-imidazole polyamide targeting transforming growth factor-beta1 inhibits restenosis and preserves endothelialization in the injured artery. Cardiovascular Research, 81, 797–804.

    Article  CAS  PubMed  Google Scholar 

  22. Stracke, S., Konner, K., Kostlin, I., Friedl, R., Jehle, P. M., Hombach, V., et al. (2002). Increased expression of TGF-beta1 and IGF-I in inflammatory stenotic lesions of hemodialysis fistulas. Kidney International, 61, 1011–1019.

    Article  CAS  PubMed  Google Scholar 

  23. Joki, N., Kaname, S., Hirakata, M., Hori, Y., Yamaguchi, T., Fujita, T., et al. (2000). Tyrosine-kinase dependent TGF-beta and extracellular matrix expression by mechanical stretch in vascular smooth muscle cells. Hypertension Research, 23, 91–99.

    Article  CAS  PubMed  Google Scholar 

  24. Barker, T. A., Massett, M. P., Korshunov, V. A., Mohan, A. M., Kennedy, A. J., & Berk, B. C. (2006). Angiotensin II type 2 receptor expression after vascular injury: Differing effects of angiotensin-converting enzyme inhibition and angiotensin receptor blockade. Hypertension, 48, 942–949.

    Article  CAS  PubMed  Google Scholar 

  25. Dubey, R. K., Jackson, E. K., & Luscher, T. F. (1995). Nitric oxide inhibits angiotensin II-induced migration of rat aortic smooth muscle cell. Role of cyclic-nucleotides and angiotensin1 receptors. Journal of Clinical Investigation, 96, 141–149.

    Article  CAS  PubMed  Google Scholar 

  26. Nishimoto, M., Takai, S., Sawada, Y., Yuda, A., Kondo, K., Yamada, M., et al. (2001). Chymase-dependent angiotensin II formation in the saphenous vein versus the internal thoracic artery. Journal of Thoracic and Cardiovascular Surgery, 121, 729–734.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by China Postdoctoral Science Foundation (20070410732), and Jiangsu Nature Science Foundation (BK2007543).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingjun You.

Rights and permissions

Reprints and permissions

About this article

Cite this article

You, Q., Duan, L., Wang, F. et al. Characterization of the Inhibition of Vein Graft Intimal Hyperplasia by a Biodegradable Vascular Stent. Cell Biochem Biophys 59, 99–107 (2011). https://doi.org/10.1007/s12013-010-9118-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-010-9118-8

Keywords

Navigation