Log in

Characterization of Mild Delayed Gestational Hypertension in Rats Following Ozone Exposure

  • Research
  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

The contribution of air pollution-induced cardiopulmonary damage on the development of hypertensive disorders of pregnancy and other adverse outcomes of pregnancy has gained increased attention as epidemiological data continue to highlight spatiotemporal pregnancy trends related to air pollution exposure. However clinical mechanistic data surrounding gestational complications remain sparse, necessitating the need for the use of animal models to study these types of complications of pregnancy. The current study seeks to examine the real-time effects of mid-gestational ozone exposure on maternal blood pressure and body temperature through the use of radiotelemetry in a rat model. The exposure resulted in acute depression of heart rate and core body temperature as compared to control animals. Ozone-exposed animals also presented with a slight but significant increase in arterial blood pressure which was perpetuated until term. The data presented here illustrates the feasibility of murine models to assess cardiovascular complications caused by inhaled toxicants during the window of pregnancy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Brook, R. D., Rajagopalan, S., Pope, C. A., 3rd., Brook, J. R., Bhatnagar, A., Diez-Roux, A. V., Holguin, F., Hong, Y., Luepker, R. V., Mittleman, M. A., Peters, A., Siscovick, D., Smith, S. C., Jr., Whitsel, L., Kaufman, J. D., American Heart Association Council on E, Prevention CotKiCD, Council on Nutrition PA, and Metabolism. (2010). Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the american heart association. Circulation, 121, 2331–2378.

    Article  CAS  PubMed  Google Scholar 

  2. Dadvand, P., Ostro, B., Amato, F., Figueras, F., Minguillon, M. C., Martinez, D., Basagana, X., Querol, X., & Nieuwenhuijsen, M. (2014). Particulate air pollution and preeclampsia: A source-based analysis. Occupational and environmental medicine, 71, 570–577.

    Article  PubMed  Google Scholar 

  3. Hu, H., Ha, S., Roth, J., Kearney, G., Talbott, E. O., & Xu, X. (2014). Ambient air pollution and hypertensive disorders of pregnancy: A systematic review and meta-analysis. Atmospheric Environment, 97, 336–345.

    Article  CAS  PubMed  Google Scholar 

  4. Pedersen, M., Stayner, L., Slama, R., Sorensen, M., Figueras, F., Nieuwenhuijsen, M. J., Raaschou-Nielsen, O., & Dadvand, P. (2014). Ambient air pollution and pregnancy-induced hypertensive disorders: A systematic review and meta-analysis. Hypertension, 64, 494–500.

    Article  CAS  PubMed  Google Scholar 

  5. Wang, Q., Zhang, H., Liang, Q., Knibbs, L. D., Ren, M., Li, C., Bao, J., Wang, S., He, Y., Zhu, L., Wang, X., Zhao, Q., & Huang, C. (2018). Effects of prenatal exposure to air pollution on preeclampsia in Shenzhen China. Environmental Pollution, 237, 18–27.

    Article  CAS  PubMed  Google Scholar 

  6. Hettfleisch, K., Bernardes, L. S., Carvalho, M. A., Pastro, L. D., Vieira, S. E., Saldiva, S. R., Saldiva, P., & Francisco, R. P. (2017). Short-term exposure to urban air pollution and influences on placental vascularization indexes. Environmental Health Perspectives, 125, 753–759.

    Article  CAS  PubMed  Google Scholar 

  7. Miller, C. N., Dye, J. A., Ledbetter, A. D., Schladweiler, M. C., Richards, J. H., Snow, S. J., Wood, C. E., Henriquez, A. R., Thompson, L. C., Farraj, A. K., Hazari, M. S., & Kodavanti, U. P. (2017). Uterine artery flow and offspring growth in long-evans rats following maternal exposure to ozone during implantation. Environmental Health Perspectives, 125, 127005.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Lee, P. C., Talbott, E. O., Roberts, J. M., Catov, J. M., Bilonick, R. A., Stone, R. A., Sharma, R. K., & Ritz, B. (2012). Ambient air pollution exposure and blood pressure changes during pregnancy. Environmental Research, 117, 46–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Garcia, M., Salazar, R., Wilson, T., Lucas, S., Herbert, G., Young, T., Begay, J., Denson, J. L., Zychowski, K., Ashley, R., Byrum, S., Mackintosh, S., Bleske, B. E., Ottens, A. K., & Campen, M. J. (2021). Early gestational exposure to inhaled ozone impairs maternal uterine artery and cardiac function. Toxicological Sciences, 179, 121–134.

    Article  CAS  PubMed  Google Scholar 

  10. Patten, I. S., Rana, S., Shahul, S., Rowe, G. C., Jang, C., Liu, L., Hacker, M. R., Rhee, J. S., Mitchell, J., Mahmood, F., Hess, P., Farrell, C., Koulisis, N., Khankin, E. V., Burke, S. D., Tudorache, I., Bauersachs, J., del Monte, F., Hilfiker-Kleiner, D., Arany, Z. (2012). Cardiac angiogenic imbalance leads to peripartum cardiomyopathy. Nature, 485, 333–338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Maynard, S. E., Min, J. Y., Merchan, J., Lim, K. H., Li, J., Mondal, S., Libermann, T. A., Morgan, J. P., Sellke, F. W., Stillman, I. E., Epstein, F. H., Sukhatme, V. P., & Karumanchi, S. A. (2003). Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. The Journal of Clinical Investigation, 111, 649–658.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Arany, Z., & Elkayam, U. (2016). Peripartum cardiomyopathy. Circulation, 133, 1397–1409.

    Article  CAS  PubMed  Google Scholar 

  13. Hunter, R., Baird, B., Garcia, M., Begay, J., Goitom, S., Lucas, S., Herbert, G., Scieszka, D., Padilla, J., Brayer, K., Ottens, A. K., Suter, M. A., Barrozo, E. R., Hines, C., Bleske, B., & Campen, M. J. (2023). Gestational ozone inhalation elicits maternal cardiac dysfunction and transcriptional changes to placental pericytes and endothelial cells. Toxicological Sciences, 196, 238–249.

    Article  CAS  PubMed  Google Scholar 

  14. Robertson, S., Colombo, E. S., Lucas, S. N., Hall, P. R., Febbraio, M., Paffett, M. L., & Campen, M. J. (2013). CD36 mediates endothelial dysfunction downstream of circulating factors induced by O3 exposure. Toxicological Sciences, 134, 304–311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hatch, G. E., Slade, R., Harris, L. P., McDonnell, W. F., Devlin, R. B., Koren, H. S., Costa, D. L., & McKee, J. (1994). Ozone dose and effect in humans and rats a comparison using oxygen-18 labeling and bronchoalveolar lavage. American Journal of Respiratory and Critical Care Medicine, 150, 676–683.

    Article  CAS  PubMed  Google Scholar 

  16. Watkinson, W. P., Campen, M. J., Nolan, J. P., & Costa, D. L. (2001). Cardiovascular and systemic responses to inhaled pollutants in rodents: Effects of ozone and particulate matter. Environmental Health Perspectives, 109(Suppl 4), 539–546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Watkinson, W. P., Wiester, M. J., & Highfill, J. W. (1995). Ozone toxicity in the rat. I. Effect of changes in ambient temperature on extrapulmonary physiological parameters. Journal of Applied Physiology, 78, 1108–1120.

    Article  CAS  PubMed  Google Scholar 

  18. Daneshvar, H., Edwards, T., Voss, K., Landis, K., Gleason, T., & Atterson, P. (2011). Cardiovascular assessment in radiotelemetry-implanted pregnant rats. Journal of Investigative Surgery, 24, 35–43.

    Article  PubMed  Google Scholar 

  19. Carlstrom, M., Wentzel, P., Skott, O., Persson, A. E., & Eriksson, U. J. (2009). Angiogenesis inhibition causes hypertension and placental dysfunction in a rat model of preeclampsia. Journal of Hypertension, 27, 829–837.

    Article  PubMed  Google Scholar 

  20. Watkinson, W. P., Campen, M. J., Lyon, J. Y., Highfill, J. W., Wiester, M. J., & Costa, D. L. (1997). Impact of the hypothermic response in inhalation toxicology studies. Annals of the New York Academy of Sciences, 813, 849–863.

    Article  CAS  PubMed  Google Scholar 

  21. Yagel, S., Cohen, S. M., Admati, I., Skarbianskis, N., Solt, I., Zeisel, A., Beharier, O., & Goldman-Wohl, D. (2023). Expert review: Preeclampsia Type I and Type II. American Journal of Obstetrics and Gynecology MFM, 5, 101203.

    Article  CAS  PubMed  Google Scholar 

  22. Khan, K. S., Wojdyla, D., Say, L., Gulmezoglu, A. M., & Van Look, P. F. (2006). WHO analysis of causes of maternal death: A systematic review. Lancet, 367, 1066–1074.

    Article  PubMed  Google Scholar 

  23. Zhang, C., Guo, Y., Yang, Y., Du, Z., Fan, Y., Zhao, Y., & Yuan, S. (2023). Oxidative stress on vessels at the maternal-fetal interface for female reproductive system disorders: Update. Front Endocrinol (Lausanne), 14, 1118121.

    Article  PubMed  Google Scholar 

  24. Goulopoulou, S. (2017). Maternal vascular physiology in preeclampsia. Hypertension, 70, 1066–1073.

    Article  CAS  PubMed  Google Scholar 

  25. Mielke, M. M., Milic, N. M., Weissgerber, T. L., White, W. M., Kantarci, K., Mosley, T. H., Windham, B. G., Simpson, B. N., Turner, S. T., & Garovic, V. D. (2016). Impaired cognition and brain atrophy decades after hypertensive pregnancy disorders. Circulation Cardiovascular Quality and Outcomes, 9, S70-76.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Weissgerber, T. L., Milic, N. M., Milin-Lazovic, J. S., & Garovic, V. D. (2016). Impaired flow-mediated dilation before, during, and after preeclampsia: A systematic review and meta-analysis. Hypertension, 67, 415–423.

    Article  CAS  PubMed  Google Scholar 

  27. Schoenaker, D. A., Soedamah-Muthu, S. S., & Mishra, G. D. (2014). The association between dietary factors and gestational hypertension and pre-eclampsia: A systematic review and meta-analysis of observational studies. BMC Medicine, 12, 157.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Than, N. G., Romero, R., Hillermann, R., Cozzi, V., Nie, G., & Huppertz, B. (2008). Prediction of preeclampsia—A workshop report. Placenta, 29(Suppl A), S83-85.

    Article  PubMed  Google Scholar 

  29. Than, N. G., Romero, R., Tarca, A. L., Kekesi, K. A., Xu, Y., Xu, Z., Juhasz, K., Bhatti, G., Leavitt, R. J., Gelencser, Z., Palhalmi, J., Chung, T. H., Gyorffy, B. A., Orosz, L., Demeter, A., Szecsi, A., Hunyadi-Gulyas, E., Darula, Z., Simor, A., Papp, Z. (2018). Integrated systems biology approach identifies novel maternal and placental pathways of preeclampsia. Frontiers in Immunology, 9, 1661.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Ma, Y., Shen, X., & Zhang, D. (2015). The relationship between serum zinc level and preeclampsia: A meta-analysis. Nutrients, 7, 7806–7820.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mirzakhani, H., Litonjua, A. A., McElrath, T. F., O’Connor, G., Lee-Parritz, A., Iverson, R., Macones, G., Strunk, R. C., Bacharier, L. B., Zeiger, R., Hollis, B. W., Handy, D. E., Sharma, A., Laranjo, N., Carey, V., Qiu, W., Santolini, M., Liu, S., Chhabra, D., Weiss, S. T. (2016). Early pregnancy vitamin D status and risk of preeclampsia. The Journal of Clinical Investigation, 126, 4702–4715.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Young, T. L., Mostovenko, E., Denson, J. L., Begay, J. G., Lucas, S. N., Herbert, G., Zychowski, K., Hunter, R., Salazar, R., Wang, T., Fraser, K., Erdely, A., Ottens, A. K., & Campen, M. J. (2021). Pulmonary delivery of the broad-spectrum matrix metalloproteinase inhibitor marimastat diminishes multiwalled carbon nanotube-induced circulating bioactivity without reducing pulmonary inflammation. Particle and Fibre Toxicology, 18, 34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cherng, T. W., Paffett, M. L., Jackson-Weaver, O., Campen, M. J., Walker, B. R., & Kanagy, N. L. (2011). Mechanisms of diesel-induced endothelial nitric oxide synthase dysfunction in coronary arterioles. Environmental Health Perspectives, 119, 98–103.

    Article  CAS  PubMed  Google Scholar 

  34. Knuckles, T. L., Lund, A. K., Lucas, S. N., & Campen, M. J. (2008). Diesel exhaust exposure enhances venoconstriction via uncoupling of eNOS. Toxicology and Applied Pharmacology, 230, 346–351.

    Article  CAS  PubMed  Google Scholar 

  35. Aragon, M. J., Topper, L., Tyler, C. R., Sanchez, B., Zychowski, K., Young, T., Herbert, G., Hall, P., Erdely, A., Eye, T., Bishop, L., Saunders, S. A., Muldoon, P. P., Ottens, A. K., & Campen, M. J. (2017). Serum-borne bioactivity caused by pulmonary multiwalled carbon nanotubes induces neuroinflammation via blood-brain barrier impairment. Proceedings of the National Academy of Sciences U S A, 114, E1968–E1976.

    Article  CAS  Google Scholar 

  36. Mostovenko, E., Young, T., Muldoon, P. P., Bishop, L., Canal, C. G., Vucetic, A., Zeidler-Erdely, P. C., Erdely, A., Campen, M. J., & Ottens, A. K. (2019). Nanoparticle exposure driven circulating bioactive peptidome causes systemic inflammation and vascular dysfunction. Particle and Fibre Toxicology, 16, 20.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Wagner, J. G., Kamal, A. S., Morishita, M., Dvonch, J. T., Harkema, J. R., & Rohr, A. C. (2014). PM2.5-induced cardiovascular dysregulation in rats is associated with elemental carbon and temperature-resolved carbon subfractions. Part Fibre Toxicol, 11, 25.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Wagner, J. G., Allen, K., Yang, H. Y., Nan, B., Morishita, M., Mukherjee, B., Dvonch, J. T., Spino, C., Fink, G. D., Rajagopalan, S., Sun, Q., Brook, R. D., & Harkema, J. R. (2014). Cardiovascular depression in rats exposed to inhaled particulate matter and ozone: Effects of diet-induced metabolic syndrome. Environmental Health Perspectives, 122, 27–33.

    Article  PubMed  Google Scholar 

  39. Akcilar, R., Akcer, S., Simsek, H., Akcilar, A., Bayat, Z., & Genc, O. (2015). The effect of ozone on blood pressure in DOCA-salt-induced hypertensive rats. International Journal of Clinical and Experimental Medicine, 8, 12783–12791.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Farraj, A. K., Malik, F., Haykal-Coates, N., Walsh, L., Winsett, D., Terrell, D., Thompson, L. C., Cascio, W. E., & Hazari, M. S. (2016). Morning NO2 exposure sensitizes hypertensive rats to the cardiovascular effects of same day O3 exposure in the afternoon. Inhalation Toxicology, 28, 170–179.

    Article  CAS  PubMed  Google Scholar 

  41. Farraj, A. K., Martin, B. L., Schladweiler, M. C., Miller, C. N., Smoot, J., Williams, W., Fisher, A., Oshiro, W., Tennant, A., Martin, W. K., Henriquez, A. R., Grindstaff, R., Gavett, S. H., Gilmour, M. I., Kodavanti, U. P., Hazari, M. S., & Dye, J. A. (2023). Mild allergic airways responses to an environmental mixture increase cardiovascular risk in rats. Toxicological Sciences, 191, 106–122.

    Article  CAS  PubMed  Google Scholar 

  42. Ishii, Y., Hashimoto, K., Nomura, A., Sakamoto, T., Uchida, Y., Ohtsuka, M., Hasegawa, S., & Sagai, M. (1998). Elimination of neutrophils by apoptosis during the resolution of acute pulmonary inflammation in rats. Lung, 176, 89–98.

    Article  CAS  PubMed  Google Scholar 

  43. Kierstein, S., Poulain, F. R., Cao, Y., Grous, M., Mathias, R., Kierstein, G., Beers, M. F., Salmon, M., Panettieri, R. A., Jr., & Haczku, A. (2006). Susceptibility to ozone-induced airway inflammation is associated with decreased levels of surfactant protein D. Respiratory Research, 7, 85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gowdy, K. M., Kilburg-Basnyat, B., Hodge, M. X., Reece, S. W., Yermalitsk, V., Davies, S. S., Manke, J., Armstrong, M. L., Reisdorph, N., Tighe, R. M., & Shaikh, S. R. (2021). Novel mechanisms of ozone-induced pulmonary inflammation and resolution, and the potential protective role of scavenger receptor BI. Research Reports: Health Effects Institute, 1, 49.

    Google Scholar 

Download references

Acknowledgements

This research was funded by the Eunice Kennedy Shriver National Institute of Child Health and Human Development (F31 HD107945), the National Institute of Environmental Health Sciences (R01 ES014639), and the National Institute for General Medical Sciences (P20 GM130422).

Author information

Authors and Affiliations

Authors

Contributions

All authors read and approved the manuscript. Major writing was conducted by RH, NLK, BB, and MC. Surgical procedures were conducted by CP, TW, and RH Exposures were conducted by SL. Data collection and analysis were conducted by RH, DL, and MC. Study design and conceptualization was conducted by TW, RH, AO, MC, RA, and NLK

Corresponding author

Correspondence to Matthew Campen.

Ethics declarations

Conflict of interest

The authors declare they have no financial conflicts of interest with the content of this manuscript.

Additional information

Handling Editor: Daniel Conklin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hunter, R., Wilson, T., Lucas, S. et al. Characterization of Mild Delayed Gestational Hypertension in Rats Following Ozone Exposure. Cardiovasc Toxicol (2024). https://doi.org/10.1007/s12012-024-09887-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12012-024-09887-w

Keywords

Navigation