Log in

Effects of Low- and High-Dose Valproic Acid and Lamotrigine on the Heart in Female Rats

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Epilepsy is a chronic neurological disease that affects more than 50 million people worldwide. Antiepileptic drugs (AEDs) are the mainstay of treatment for most patients with epilepsy. However, AEDs have been reported to be associated with adverse cardiac effects. In this study, it was aimed to investigate the possible cardiac effects of low-dose (LD) and high-dose (HD) treatment of valproic acid (VPA) and lamotrigine (LTG), which are commonly used AEDs, in rats without epilepsy. Rats were randomly grouped as control, LD-VPA, HD-VPA, LD-LTG, and HD-LTG. The cardiac effects of AEDs were evaluated using immunohistological, biochemical, and hemodynamic parameters. A dose-dependent increase in the intensity of caspase-3 staining was detected in the VPA and LTG groups. The intensity of connexin-43 and troponin-T staining in the VPA groups and desmin staining in the LTG groups was significantly reduced. Biochemically, HD-VPA and HD-LTG administrations caused a significant increase in MDA level in myocardial tissue. In addition, as a result of hemodynamic evaluations, cardiac functions were found to be affected and blood pressure increased in HD-LTG group. The results of present study support that VPA and LTG treatment can increase cardiac risk markers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Behr, C., Goltzene, M., Kosmalski, G., Hirsch, E., & Ryvlin, P. (2016). Epidemiology of epilepsy. Revue Neurologique, 172(1), 27–36. https://doi.org/10.1016/j.neurol.2015.11.003

    Article  CAS  PubMed  Google Scholar 

  2. Fisher, R. S., Acevedo, C., Arzimanoglou, A., Bogacz, A., Cross, J. H., Elger, C. E., Engel, J., Jr., Forsgren, L., French, J. A., Glynn, M., Hesdorffer, D. C., Lee, B. I., Mathern, G. W., Moshé, S. L., Perucca, E., Scheffer, I. E., Tomson, T., Watanabe, M., & Wiebe, S. (2014). ILAE official report: A practical clinical definition of epilepsy. Epilepsia, 55(4), 475–482. https://doi.org/10.1111/epi.12550

    Article  PubMed  Google Scholar 

  3. Nilsson, L., Tomson, T., Farahmand, B., Diwan, V., & Persson, P. (1997). Cause-specific mortality in epilepsy: A cohort study of more than 9,000 patients once hospitalized for epilepsy. Epilepsia, 38(10), 1062–1068. https://doi.org/10.1111/j.1528-1157.1997.tb01194.x

    Article  CAS  PubMed  Google Scholar 

  4. Janszky, I., Hallqvist, J., Tomson, T., Ahlbom, A., Mukamal, K. J., & Ahnve, S. (2009). Increased risk and worse prognosis of myocardial infarction in patients with prior hospitalization for epilepsy-the Stockholm Heart Epidemiology Program. Brain: A Journal of Neurology, 132(10), 2798–2804. https://doi.org/10.1093/brain/awp216

    Article  Google Scholar 

  5. Neligan, A., Bell, G. S., Johnson, A. L., Goodridge, D. M., Shorvon, S. D., & Sander, J. W. (2011). The long-term risk of premature mortality in people with epilepsy. Brain: A Journal of Neurology, 134(2), 388–395. https://doi.org/10.1093/brain/awq378

    Article  Google Scholar 

  6. Katsiki, N., Mikhailidis, D. P., & Nair, D. R. (2014). The effects of antiepileptic drugs on vascular risk factors: A narrative review. Seizure, 23(9), 677–684. https://doi.org/10.1016/j.seizure.2014.05.011

    Article  PubMed  Google Scholar 

  7. Rugg-Gunn, F. J., & Holdright, D. (2010). Epilepsy and the heart. British Journal of Cardiology, 17(5), 223–229.

    Google Scholar 

  8. Schuele, S. U. (2009). Effects of seizures on cardiac function. Journal of Clinical Neurophysiology, 26(5), 302–308.

    Article  PubMed  Google Scholar 

  9. Mamalyga, M. (2014). Effect of anticonvulsant therapy for absence epilepsy on heart function. Bulletin of Experimental Biology and Medicine, 157(5), 560–563.

    Article  CAS  PubMed  Google Scholar 

  10. Aurlien, D., Gjerstad, L., & Taubøll, E. (2016). The role of antiepileptic drugs in sudden unexpected death in epilepsy. Seizure, 43, 56–60. https://doi.org/10.1016/j.seizure.2016.11.005

    Article  PubMed  Google Scholar 

  11. Aurlien, D., Taubøll, E., & Gjerstad, L. (2007). Lamotrigine in idiopathic epilepsy-increased risk of cardiac death? Acta Neurologica Scandinavica, 115(3), 199–203. https://doi.org/10.1111/j.1600-0404.2006.00730.x

    Article  CAS  PubMed  Google Scholar 

  12. Löscher, W. (1999). Valproate: A reappraisal of its pharmacodynamic properties and mechanisms of action. Progress in Neurobiology, 58(1), 31–59. https://doi.org/10.1016/S0301-0082(98)00075-6

    Article  PubMed  Google Scholar 

  13. Perucca, E. (2002). Pharmacological and therapeutic properties of valproate. CNS Drugs, 16(10), 695–714.

    Article  CAS  PubMed  Google Scholar 

  14. Culy, C. R., & Goa, K. L. (2000). Lamotrigine. Paediatric drugs, 2(4), 299–330.

    Article  CAS  PubMed  Google Scholar 

  15. Giri, V. P., Giri, O. P., Khan, F. A., Kumar, N., Kumar, A., & Haque, A. (2016). Valproic acid versus lamotrigine as first-line monotherapy in newly diagnosed ıdiopathic generalized tonic-clonic seizures in adults-a randomized controlled trial. Journal of clinical and diagnostic research, 10(7), FC01–FC04. https://doi.org/10.7860/JCDR/2016/16911.8121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nalivaeva, N. N., Belyaev, N. D., & Turner, A. J. (2009). Sodium valproate: An old drug with new roles. Trends in Pharmacological Sciences, 30(10), 509–514. https://doi.org/10.1016/j.tips.2009.07.002

    Article  CAS  PubMed  Google Scholar 

  17. Lei, L., Sun, Y., Han, X., Xu, C.-c, Tang, Y.-P., & Dong, Q. (2011). Valproic acid improves outcome after rodent spinal cord injury: Potential roles of histone deacetylase inhibition. Brain Research, 1396, 60–68. https://doi.org/10.1016/j.brainres.2011.03.040

    Article  CAS  Google Scholar 

  18. LaRoche, S. M., & Helmers, S. L. (2004). The new antiepileptic drugs: Scientific review. JAMA, 291(5), 605–614. https://doi.org/10.1001/jama.291.5.605

    Article  CAS  PubMed  Google Scholar 

  19. Davis, R., Peters, D. H., & McTavish, D. (1994). Valproic acid. A reappraisal of its pharmacological properties and clinical efficacy in epilepsy. Drugs, 47(2), 332–372.

    Article  CAS  PubMed  Google Scholar 

  20. Mattson, R. H., Cramer, J. A., Collins, J. F., Department of Veterans Affairs Epilepsy Cooperative Study No. 264 Group*. (1992). A comparison of valproate with carbamazepine for the treatment of complex partial seizures and secondarily generalized tonic-clonic seizures in adults. New England Journal of Medicine, 327(11), 765–771. https://doi.org/10.1056/NEJM199209103271104

    Article  CAS  PubMed  Google Scholar 

  21. Dinesen, H., Gram, L., Andersen, T., & Dam, M. (1984). Weight gain during treatment with valproate. Acta Neurologica Scandinavica, 70(2), 65–69. https://doi.org/10.1111/j.1600-0404.1984.tb00804.x

    Article  CAS  PubMed  Google Scholar 

  22. Farooq, F., Din, J. S., Khan, A. M., Naqvi, S., Shagufta, S., & Mohit, A. (2017). Valproate-induced hyperammonemic encephalopathy. Cureus, 9(8), e1593. https://doi.org/10.7759/cureus.1593

    Article  PubMed  PubMed Central  Google Scholar 

  23. Polat, F., Köşkderelioğlu, A., Alpaydın, S., Keskinöz, N., Araç, N., Gönül, A. S., Kocaman, A., & Şirin, H. (2010). Valproate-induced encephalopathy in three cases. Turkish Journal of Neurology, 16(4), 203–207.

    Google Scholar 

  24. Isojärvi, J. I., Taubøll, E., Pakarinen, A. J., van Parys, J., Rättyä, J., Harbo, H. F., Dale, P. O., Fauser, B. C., Gjerstad, L., Koivunen, R., Knip, M., & Tapanainen, J. S. (2001). Altered ovarian function and cardiovascular risk factors in valproate-treated women. The American Journal of Medicine, 111(4), 290–296. https://doi.org/10.1016/S0002-9343(01)00806-3

    Article  PubMed  Google Scholar 

  25. Herranz, J. L., Arteaga, R., & Armijo, J. A. (1996). Three-year efficacy and tolerability of add-on lamotrigine in treatment-resistant epileptic children. Clinical Drug Investigation, 11(4), 214–223.

    Article  Google Scholar 

  26. Besag, F., Dulac, O., Alving, J., & Mullens, E. (1997). Long-term safety and efficacy of lamotrigine (Lamictal®) in paediatric patients with epilepsy. Seizure, 6(1), 51–56.

    Article  CAS  PubMed  Google Scholar 

  27. Terao, T., Ishida, A., Kimura, T., Yoshida, M., & Hara, T. (2017). Assessment of safety and efficacy of lamotrigine over the course of 1-year observation in Japanese patients with bipolar disorder: Post-marketing surveillance study report. Neuropsychiatric Disease and Treatment, 13, 1441.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Guberman, A. H., Besag, F. M., Brodie, M. J., Dooley, J. M., Duchowny, M. S., Pellock, J. M., Richens, A., Stern, R. S., & Trevathan, E. (1999). Lamotrigine-associated rash: Risk/benefit considerations in adults and children. Epilepsia, 40(7), 985–991. https://doi.org/10.1111/j.1528-1157.1999.tb00807.x

    Article  CAS  PubMed  Google Scholar 

  29. Schaub, J. E. M., Williamson, P. J., Barnes, E. W., & Trewby, P. N. (1994). Multisystem adverse reaction to lamotrigine. The Lancet, 344(8920), 481. https://doi.org/10.1016/S0140-6736(94)91818-X

    Article  CAS  Google Scholar 

  30. Chattergoon, D. S., McGuigan, M. A., Koren, G., Hwang, P., & Ito, S. (1997). Multiorgan dysfunction and disseminated intravascular coagulation in children receiving lamotrigine and valproic acid. Neurology, 49(5), 1442–1444. https://doi.org/10.1212/WNL.49.5.1442

    Article  CAS  PubMed  Google Scholar 

  31. Tian, S., Lei, I., Gao, W., Liu, L., Guo, Y., Creech, J., Herron, T. J., **an, S., Ma, P. X., Chen, E., Li, Y., Alam, H. B., & Wang, Z. (2019). HDAC inhibitor valproic acid protects heart function through Foxm1 pathway after acute myocardial infarction. eBioMedicine, 39, 83–94. https://doi.org/10.1016/j.ebiom.2018.12.003

    Article  PubMed  Google Scholar 

  32. Li, R. F., Cao, S. S., Fang, W. J., Song, Y., Luo, X. T., Wang, H. Y., & Wang, J. G. (2017). Roles of HDAC2 and HDAC8 in cardiac remodeling in renovascular hypertensive rats and the effects of valproic acid sodium. Pharmacology, 99(1–2), 27–39. https://doi.org/10.1159/000449467

    Article  CAS  PubMed  Google Scholar 

  33. Shi, X., Liu, Y., Zhang, D., & **ao, D. (2019). Valproic acid attenuates sepsis-induced myocardial dysfunction in rats by accelerating autophagy through the PTEN/AKT/mTOR pathway. Life Sciences, 232, 116613. https://doi.org/10.1016/j.lfs.2019.116613

    Article  CAS  PubMed  Google Scholar 

  34. Liu, Y., Li, S., Zhang, Z., Lv, Z., Jiang, H., Tan, X., & Liu, F. (2017). Effects of valproic acid on sympathetic activity and left ventricular myocardial remodelling in rats during pressure overload. Turkish Journal of Medical Sciences, 47(5), 1651–1660. https://doi.org/10.3906/sag-1704-142

    Article  CAS  PubMed  Google Scholar 

  35. Daniels, T., Gallagher, M., Tremblay, G., & Rodgers, R. L. (2004). Effects of valproic acid on cardiac metabolism. Canadian Journal of Physiology and Pharmacology, 82(10), 927–933. https://doi.org/10.1139/y04-096

    Article  CAS  PubMed  Google Scholar 

  36. Bratton, S. L., Garden, A. L., Bohan, T. P., French, J. W., & Clarke, W. R. (1992). A child with valproic acid-associated carnitine deficiency and carnitine-responsive cardiac dysfunction. Journal of Child Neurology, 7(4), 413–416. https://doi.org/10.1177/088307389200700416

    Article  CAS  PubMed  Google Scholar 

  37. Coulter, D. L. (1991). Carnitine, valproate, and toxicity. Journal of Child Neurology, 6(1), 7–14. https://doi.org/10.1177/088307389100600102

    Article  CAS  PubMed  Google Scholar 

  38. Kibayashi, M., Nagao, M., & Chiba, S. (1999). Influence of valproic acid on the expression of various acyl-CoA dehydrogenases in rats. Pediatrics International, 41(1), 52–60. https://doi.org/10.1046/j.1442-200x.1999.01012.x

    Article  CAS  PubMed  Google Scholar 

  39. Alyahya, B., Friesen, M., Nauche, B., & Laliberté, M. (2018). Acute lamotrigine overdose: A systematic review of published adult and pediatric cases. Clinical Toxicology, 56(2), 81–89. https://doi.org/10.1080/15563650.2017.1370096

    Article  CAS  PubMed  Google Scholar 

  40. Hagley, S. P., Epstein, S. E., Stern, J. A., & Poppenga, R. (2020). Lamotrigine toxicosis treated with intravenous lipid emulsion therapy in a dog. Journal of the American Animal Hospital Association, 56(4), 226–230. https://doi.org/10.5326/JAAHA-MS-6815

    Article  PubMed  Google Scholar 

  41. Chavez, P., Dominguez, A. C., & Herzog, E. (2015). Evolving electrocardiographic changes in lamotrigine overdose: A case report and literature review. Cardiovascular Toxicology, 15(4), 394–398.

    Article  PubMed  Google Scholar 

  42. Rygula, R., Golebiowska, J., Kregiel, J., Holuj, M., & Popik, P. (2015). Acute administration of lithium, but not valproate, modulates cognitive judgment bias in rats. Psychopharmacology (Berl), 232(12), 2149–2156.

    Article  CAS  Google Scholar 

  43. Liu, Q., Li, H., Yang, J., Niu, X., Zhao, C., Zhao, L., & Wang, Z. (2017). Valproic acid attenuates inflammation of optic nerve and apoptosis of retinal ganglion cells in a rat model of optic neuritis. Biomedicine & Pharmacotherapy, 96, 1363–1370. https://doi.org/10.1016/j.biopha.2017.11.066

    Article  CAS  Google Scholar 

  44. Paudel, K. R., Bhattacharya, S. K., Rauniar, G. P., & Das, B. P. (2011). Comparison of antinociceptive effect of the antiepileptic drug gabapentin to that of various dosage combinations of gabapentin with lamotrigine and topiramate in mice and rats. Journal of Neurosciences in Rural Practice, 2(2), 130–136.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Walker, M., Curtis, M., Hearse, D., Campbell, R., Janse, M., Yellon, D., Cobbe, S., Coker, S., Harness, J., & Harron, D. (1988). The Lambeth Conventions: Guidelines for the study of arrhythmias in ischaemia, infarction, and reperfusion. Cardiovascular Research, 22, 447–455. https://doi.org/10.1093/cvr/22.7.447

    Article  CAS  PubMed  Google Scholar 

  46. Cakmak Karaer, I., Simsek, G., Yildiz, A., Vardi, N., Polat, A., Tanbek, K., Gurocak, S., & Parlakpinar, H. (2016). Melatonin’s protective effect on the salivary gland against ionized radiation damage in rats. Journal of Oral Pathology & Medicine, 45(6), 444–449. https://doi.org/10.1111/jop.12386

    Article  CAS  Google Scholar 

  47. Izgut-Uysal, V. N., Acar, N., Birsen, I., Ozcan, F., Ozbey, O., Soylu, H., Avci, S., Tepekoy, F. F., Akkoyunlu, G., Yucel, G., & Ustunel, I. (2018). Apelin-APJ system is responsible for stress-induced increase in atrial natriuretic peptide expression in rat heart. Tissue and Cell, 51, 91–96. https://doi.org/10.1016/j.tice.2017.10.009

    Article  CAS  PubMed  Google Scholar 

  48. Buege, J. A., & Aust, S. D. (1978). Microsomal lipid peroxidation. Methods in Enzymology, 52, 302–310. https://doi.org/10.1016/S0076-6879(78)52032-6

    Article  CAS  PubMed  Google Scholar 

  49. Akerboom, T. P., & Sies, H. (1981). Assay of glutathione, glutathione disulfide, and glutathione mixed disulfides in biological samples. Methods in Enzymology, 77, 373–382. https://doi.org/10.1016/S0076-6879(81)77050-2

    Article  CAS  PubMed  Google Scholar 

  50. Perucca, P., & Gilliam, F. G. (2012). Adverse effects of antiepileptic drugs. The Lancet Neurology, 11(9), 792–802. https://doi.org/10.1016/S1474-4422(12)70153-9

    Article  CAS  PubMed  Google Scholar 

  51. Vivanco-Hidalgo, R. M., Gomez, A., Moreira, A., Díez, L., Elosua, R., & Roquer, J. (2017). Prevalence of cardiovascular risk factors in people with epilepsy. Brain and Behavior, 7(2), e00618. https://doi.org/10.1002/brb3.618

    Article  PubMed  Google Scholar 

  52. Strimel, W. J., Woodruff, A., Cheung, P., Kirmani, B. F., & Huang, S. K. S. (2010). Brugada-like electrocardiographic pattern induced by lamotrigine toxicity. Clinical Neuropharmacology, 33(5), 265–267.

    Article  PubMed  Google Scholar 

  53. Venkatraman, N., O’Neil, D., & Hall, A. (2008). Life-threatening overdose with lamotrigine, citalopram, and chlorpheniramine. Journal of Postgraduate Medicine, 54(4), 316.

    Article  CAS  PubMed  Google Scholar 

  54. Sonmez, F. M., Zaman, D., Aksoy, A., Deger, O., Aliyazicioglu, R., Karaguzel, G., & Fazlioglu, K. (2013). The effects of topiramate and valproate therapy on insulin, c-peptide, leptin, neuropeptide Y, adiponectin, visfatin, and resistin levels in children with epilepsy. Seizure, 22(10), 856–861. https://doi.org/10.1016/j.seizure.2013.07.007

    Article  PubMed  Google Scholar 

  55. Nattel, S., Maguy, A., Le Bouter, S., & Yeh, Y.-H. (2007). Arrhythmogenic ion-channel remodeling in the heart: Heart failure, myocardial infarction, and atrial fibrillation. Physiological Reviews, 87(2), 425–456. https://doi.org/10.1152/physrev.00014.2006

    Article  CAS  PubMed  Google Scholar 

  56. Nilsson, L., Farahmand, B., Persson, P., Thiblin, I., & Tomson, T. (1999). Risk factors for sudden unexpected death in epilepsy: A case control study. The Lancet, 353(9156), 888–893. https://doi.org/10.1016/S0140-6736(98)05114-9

    Article  CAS  Google Scholar 

  57. Feldman, A. E., & Gidal, B. E. (2013). QTc prolongation by antiepileptic drugs and the risk of torsade de pointes in patients with epilepsy. Epilepsy & Behavior, 26(3), 421–426. https://doi.org/10.1016/j.yebeh.2012.09.021

    Article  Google Scholar 

  58. Stefani, M., Arima, H., & Mohamed, A. (2013). Withdrawal of anti-epileptic medications during video EEG monitoring does not alter ECG parameters or HRV. Epilepsy Research, 106(1–2), 222–229. https://doi.org/10.1016/j.eplepsyres.2013.04.003

    Article  CAS  PubMed  Google Scholar 

  59. Antzelevitch, C., & Shimizu, W. (2002). Cellular mechanisms underlying the long QT syndrome. Current Opinion in Cardiology, 17(1), 43–51.

    Article  PubMed  Google Scholar 

  60. Tomaselli, G. F., Beuckelmann, D. J., Calkins, H. G., Berger, R. D., Kessler, P. D., Lawrence, J. H., Kass, D., Feldman, A. M., & Marban, E. (1994). Sudden cardiac death in heart failure. The role of abnormal repolarization. Circulation, 90(5), 2534–2539. https://doi.org/10.1161/01.CIR.90.5.2534

    Article  CAS  PubMed  Google Scholar 

  61. Straus, S. M., Kors, J. A., De Bruin, M. L., van der Hooft, C. S., Hofman, A., Heeringa, J., Deckers, J. W., Kingma, H. J., Sturkenboom, M. C. J. M., Ch Stricker, H. B., & Witteman, J. C. M. (2006). Prolonged QTc interval and risk of sudden cardiac death in a population of older adults. Journal of the American College of Cardiology, 47(2), 362–367.

    Article  PubMed  Google Scholar 

  62. Danielsson, B. R., Lansdell, K., Patmore, L., & Tomson, T. (2005). Effects of the antiepileptic drugs lamotrigine, topiramate and gabapentin on hERG potassium currents. Epilepsy Research, 63(1), 17–25. https://doi.org/10.1016/j.eplepsyres.2004.10.002

    Article  CAS  PubMed  Google Scholar 

  63. Huang, C. W., Huang, C. C., Liu, Y. C., & Wu, S. N. (2004). inhibitory effect of lamotrigine on A-type potassium current in hippocampal neuron-derived H19–7 cells. Epilepsia, 45(7), 729–736. https://doi.org/10.1111/j.0013-9580.2004.58403.x

    Article  CAS  PubMed  Google Scholar 

  64. Guo, J., Wang, T., Yang, T., Xu, J., Li, W., Fridman, M. D., Fisher, J. T., & Zhang, S. (2011). Interaction between the cardiac rapidly (IKr) and slowly (IKs) activating delayed rectifier potassium channels revealed by low K+-induced endocytic degradation. Journal of Biological Chemistry, 286(40), 34664–34674. https://doi.org/10.1074/jbc.M111.253351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Nna, V. U., Abu Bakar, A. B., Ahmad, A., Eleazu, C. O., & Mohamed, M. (2019). Oxidative stress, NF-κb-mediated inflammation and apoptosis in the testes of streptozotocin-induced diabetic rats: Combined protective effects of malaysian propolis and metformin. Antioxidants, 8(10), 46. https://doi.org/10.3390/antiox8100465

    Article  CAS  Google Scholar 

  66. Somade, O. T., Ajayi, B. O., Olunaike, O. E., & Jimoh, L. A. (2020). Hepatic oxidative stress, up-regulation of pro-inflammatory cytokines, apoptotic and oncogenic markers following 2-methoxyethanol administrations in rats. Biochemistry and Biophysics Reports, 24, 100806. https://doi.org/10.1016/j.bbrep.2020.100806

    Article  PubMed  PubMed Central  Google Scholar 

  67. Thornberry, N. A. (1998). Caspases: Key mediators of apoptosis. Chemistry & Biology, 5(5), R97-103. https://doi.org/10.1016/S1074-5521(98)90615-9

    Article  CAS  Google Scholar 

  68. Porter, A. G., & Jänicke, R. U. (1999). Emerging roles of caspase-3 in apoptosis. Cell Death and Differentiation, 6(2), 99–104.

    Article  CAS  PubMed  Google Scholar 

  69. Sabbah, H. N., Sharov, V. G., Gupta, R. C., Todor, A., Singh, V., & Goldstein, S. (2000). Chronic therapy with metoprolol attenuates cardiomyocyte apoptosis in dogs with heart failure. Journal of the American College of Cardiology, 36(5), 1698–1705.

    Article  CAS  PubMed  Google Scholar 

  70. Condorelli, G., Roncarati, R., Ross, J., Pisani, A., Stassi, G., Todaro, M., Trocha, S., Drusco, A., Gu, Y., Russo, M. A., Frati, G., Jones, S. P., Lefer, D. J., Napoli, C., & Croce, C. M. (2001). Heart-targeted overexpression of caspase3 in mice increases infarct size and depresses cardiac function. Proceedings of the National Academy of Sciences, 98(17), 9977–9982. https://doi.org/10.1073/pnas.161120198

    Article  CAS  Google Scholar 

  71. Catterall, W. A., Cestèle, S., Yarov-Yarovoy, V., Frank, H. Y., Konoki, K., & Scheuer, T. (2007). Voltage-gated ion channels and gating modifier toxins. Toxicon, 49(2), 124–141. https://doi.org/10.1016/j.toxicon.2006.09.022

    Article  CAS  PubMed  Google Scholar 

  72. Razik, M. A., & Cidlowski, J. A. (2002). Molecular interplay between ion channels and the regulation of apoptosis. Biological Research, 35(2), 203–207. https://doi.org/10.4067/S0716-97602002000200011

    Article  CAS  PubMed  Google Scholar 

  73. Lang, F., Lepple-Wienhues, A., Paulmichl, M., Szabo, I., Siemen, D., & Gulbins, E. (1998). Ion channels, cell volume, and apoptotic cell death. Cellular Physiology and Biochemistry, 8(6), 285–292. https://doi.org/10.1159/000016290

    Article  CAS  PubMed  Google Scholar 

  74. Nakken, K., Heuser, K., Alfstad, K., & Taubøll, E. (2014). How do antiepileptic drugs work? Tidsskrift for den Norske laegeforening: Tidsskrift for praktisk medicin, ny raekke, 134(1), 42–46.

    Article  Google Scholar 

  75. Lasoń, W., Chlebicka, M., & Rejdak, K. (2013). Research advances in basic mechanisms of seizures and antiepileptic drug action. Pharmacological Reports, 65(4), 787–801. https://doi.org/10.1016/S1734-1140(13)71060-0

    Article  PubMed  Google Scholar 

  76. Kondratskyi, A., Kondratska, K., Skryma, R., & Prevarskaya, N. (2015). Ion channels in the regulation of apoptosis. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1848(10), 2532–2546.

    Article  CAS  Google Scholar 

  77. Wei, L., **ao, A. Y., **, C., Yang, A., Lu, Z. Y., & Yu, S. P. (2004). Effects of chloride and potassium channel blockers on apoptotic cell shrinkage and apoptosis in cortical neurons. Pflügers Archiv, 448(3), 325–334. https://doi.org/10.1016/j.bbamem.2014.10.030

    Article  CAS  PubMed  Google Scholar 

  78. Yu, S. P., Canzoniero, L. M., & Choi, D. W. (2001). Ion homeostasis and apoptosis. Current Opinion in Cell Biology, 13(4), 405–411. https://doi.org/10.1016/S0955-0674(00)00228-3

    Article  CAS  PubMed  Google Scholar 

  79. Konieczny, P., Fuchs, P., Reipert, S., Kunz, W. S., Zeöld, A., Fischer, I., Paulin, D., Schröder, R., & Wiche, G. (2008). Myofiber integrity depends on desmin network targeting to Z-disks and costameres via distinct plectin isoforms. The Journal of Cell Biology, 181(4), 667–681. https://doi.org/10.1083/jcb.200711058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Paulin, D., & Li, Z. (2004). Desmin: A major intermediate filament protein essential for the structural integrity and function of muscle. Experimental Cell Research, 301(1), 1–7. https://doi.org/10.1016/j.yexcr.2004.08.004

    Article  CAS  PubMed  Google Scholar 

  81. Milner, D. J., Weitzer, G., Tran, D., Bradley, A., & Capetanaki, Y. (1996). Disruption of muscle architecture and myocardial degeneration in mice lacking desmin. The Journal of Cell Biology, 134(5), 1255–1270. https://doi.org/10.1083/jcb.134.5.1255

    Article  CAS  PubMed  Google Scholar 

  82. Milner, D. J., Taffet, G. E., Wang, X., Pham, T., Tamura, T., Hartley, C., Gerdesc, M. A., & Capetanakia, Y. (1999). The absence of desmin leads to cardiomyocyte hypertrophy and cardiac dilation with compromised systolic function. Journal of Molecular and Cellular Cardiology, 31(11), 2063–2076. https://doi.org/10.1006/jmcc.1999.1037

    Article  CAS  PubMed  Google Scholar 

  83. Wang, X., Osinska, H., Dorn, G. W., Nieman, M., Lorenz, J. N., Gerdes, A. M., Witt, S., Kimball, T., Gulick, J., & Robbins, J. (2001). Mouse model of desmin-related cardiomyopathy. Circulation, 103(19), 2402–2407. https://doi.org/10.1161/01.CIR.103.19.2402

    Article  CAS  PubMed  Google Scholar 

  84. Schrickel, J. W., Stöckigt, F., Krzyzak, W., Paulin, D., Li, Z., Lübkemeier, I., Fleischmann, B., Sasse, P., Linhart, M., Lewalter, T., Nickenig, G., Lickfett, L., Schröder, R., & Clemen, C. S. (2010). Cardiac conduction disturbances and differential effects on atrial and ventricular electrophysiological properties in desmin deficient mice. Journal of Interventional Cardiac Electrophysiology, 28(2), 71–80.

    Article  PubMed  Google Scholar 

  85. Li, H., **a, B., Chen, W., Zhang, Y., Gao, X., Chinnathambi, A., Alharbi, S. A., & Zhao, Y. (2020). Nimbolide prevents myocardial damage by regulating cardiac biomarkers, antioxidant level, and apoptosis signaling against doxorubicin-induced cardiotoxicity in rats. Journal of Biochemical and Molecular Toxicology, 34(9), e22543. https://doi.org/10.1002/jbt.22543

    Article  CAS  Google Scholar 

  86. Vasatova, M., Pudil, R., Horacek, J. M., & Buchler, T. (2013). Current applications of cardiac troponin T for the diagnosis of myocardial damage. Advances in Clinical Chemistry, 61, 33–65. https://doi.org/10.1016/B978-0-12-407680-8.00002-6

    Article  CAS  PubMed  Google Scholar 

  87. Madrid, A. H., del Rey, J. M., Rubí, J., Ortega, J., Rebollo, J. M. G., Seara, J. G., Ripoll, E., & Moro, C. (1998). Biochemical markers and cardiac troponin I release after radiofrequency catheter ablation: Approach to size of necrosis. American Heart Journal, 136(6), 948–955. https://doi.org/10.1016/S0002-8703(98)70148-6

    Article  CAS  PubMed  Google Scholar 

  88. Burlina, A., Zaninotto, M., Secchiero, S., Rubin, D., & Accorsi, F. (1994). Troponin T as a marker of ischemic myocardial injury. Clinical Biochemistry, 27(2), 113–121. https://doi.org/10.1016/0009-9120(94)90021-3

    Article  CAS  PubMed  Google Scholar 

  89. O’brien, P. J., Dameron, G. W., Beck, M. L., Kang, Y. J., Erickson, B. K., Di Battista, T. H. I., Miller, K. E., Jackson, K. N., & Mittelstadt, S. (1997). Cardiac troponin T is a sensitive, specific biomarker of cardiac injury in laboratory animals. Comparative Medicine, 47(5), 486–495.

    Google Scholar 

  90. Adamcova, M., Šterba, M., Šimunek, T., Potacova, A., Popelova, O., Mazurova, Y., & Vladimir, G. (2005). Troponin as a marker of myocardiac damage in drug-induced cardiotoxicity. Expert Opinion on Drug Safety, 4(3), 457–472. https://doi.org/10.1517/14740338.4.3.457

    Article  CAS  PubMed  Google Scholar 

  91. Fishbein, M. C., Wang, T., Matijasevic, M., Hong, L., & Apple, F. S. (2003). Myocardial tissue troponins T and I: An immunohistochemical study in experimental models of myocardial ischemia. Cardiovascular Pathology, 12(2), 65–71. https://doi.org/10.1016/S1054-8807(02)00188-6

    Article  CAS  PubMed  Google Scholar 

  92. Herman, E. H., Zhang, J., Lipshultz, S. E., Rifai, N., Chadwick, D., Takeda, K., Yu, Z. X., & Ferrans, V. J. (1999). Correlation between serum levels of cardiac troponin-T and the severity of the chronic cardiomyopathy induced by doxorubicin. Journal of Clinical Oncology, 17(7), 2237–3237. https://doi.org/10.1200/JCO.1999.17.7.2237

    Article  CAS  PubMed  Google Scholar 

  93. Akhigbe, R. E., Ajayi, L. O., & Ajayi, A. F. (2021). Codeine exerts cardiorenal injury via upregulation of adenine deaminase/xanthine oxidase and caspase 3 signaling. Life Sciences, 273, 118717. https://doi.org/10.1016/j.lfs.2020.118717

    Article  CAS  PubMed  Google Scholar 

  94. Twerenbold, R., Reichlin, T., Reiter, M., & Mueller, C. (2011). High-sensitive cardiac troponin: Friend or foe. Swiss Medical Weekly, 141, w13202. https://doi.org/10.4414/smw.2011.13202

    Article  PubMed  Google Scholar 

  95. Mair, J., Lindahl, B., Hammarsten, O., Müller, C., Giannitsis, E., Huber, K., Möckel, M., Plebani, M., Thygesen, K., & Jaffe, A. S. (2017). How is cardiac troponin released from injured myocardium? European Heart Journal: Acute Cardiovascular Care, 7(6), 553–560. https://doi.org/10.1177/2048872617748553

    Article  PubMed  Google Scholar 

  96. Bollino, D., Balan, I., & Aurelian, L. (2015). Valproic acid induces neuronal cell death through a novel calpain-dependent necroptosis pathway. Journal of Neurochemistry, 133(2), 174–186. https://doi.org/10.1111/jnc.13029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Cheng, S. Y., Wang, S. C., Lei, M., Wang, Z., & **ong, K. (2018). Regulatory role of calpain in neuronal death. Neural Regeneration Research, 13(3), 556. https://doi.org/10.4103/1673-5374.228762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Oehme, I., Linke, J.-P., Böck, B. C., Milde, T., Lodrini, M., Hartenstein, B., Wiegand, I., Eckert, C., Roth, W., Kool, M., Kaden, S., Gröne, H. J., Schulte, J. H., Lindne, S., Hamacher-Brady, A., Brady, N. R., Deubzer, H. E., & Witt, O. (2013). Histone deacetylase 10 promotes autophagy-mediated cell survival. Proceedings of the National Academy of Sciences, 110(28), E2592–E2601. https://doi.org/10.1073/pnas.1300113110

    Article  Google Scholar 

  99. Kabeya, Y., Mizushima, N., Ueno, T., Yamamoto, A., Kirisako, T., Noda, T., Kominami, E., Ohsumi, Y., & Yoshimori, T. (2000). LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. The EMBO Journal, 19(21), 5720–5728. https://doi.org/10.1093/emboj/19.21.5720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Sun, J. M., Wang, C. M., Guo, Z., Hao, Y. Y., **e, Y. J., Gu, J., & Wang, A. L. (2015). Reduction of isoproterenol-induced cardiac hypertrophy and modulation of myocardial connexin43 by a KATP channel agonist. Molecular Medicine Reports, 11(3), 1845–1850. https://doi.org/10.3892/mmr.2014.2988

    Article  CAS  PubMed  Google Scholar 

  101. Danik, S. B., Liu, F., Zhang, J., Suk, H. J., Morley, G. E., Fishman, G. I., & Gutstein, D. E. (2004). Modulation of cardiac gap junction expression and arrhythmic susceptibility. Circulation Research, 95(10), 1035–1041. https://doi.org/10.1161/01.RES.0000148664.33695.2a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Dupont, E., Matsushita, T., Kaba, R. A., Vozzi, C., Coppen, S. R., Khan, N., Kaprielian, R., Yacoub, M. H., & Severs, N. J. (2001). Altered connexin expression in human congestive heart failure. Journal of Molecular and Cellular Cardiology, 33(2), 359–371. https://doi.org/10.1006/jmcc.2000.1308

    Article  CAS  PubMed  Google Scholar 

  103. Yao, J.-A., Gutstein, D. E., Liu, F., Fishman, G. I., & Wit, A. L. (2003). Cell coupling between ventricular myocyte pairs from connexin43-deficient murine hearts. Circulation Research, 93(8), 736–743. https://doi.org/10.1161/01.RES.0000095977.66660.86

    Article  CAS  PubMed  Google Scholar 

  104. van Rijen, H. V. M., Eckardt, D., Degen, J., Theis, M., Ott, T., Willecke, K., Jongsma, H. J., Opthof, T., & de Bakker, J. M. T. (2004). Slow conduction and enhanced anisotropy increase the propensity for ventricular tachyarrhythmias in adult mice with induced deletion of connexin43. Circulation, 109(8), 1048–1055. https://doi.org/10.1161/01.CIR.0000117402.70689.75

    Article  CAS  PubMed  Google Scholar 

  105. Agarwal, N. B., Agarwal, N. K., Mediratta, P. K., & Sharma, K. K. (2011). Effect of lamotrigine, oxcarbazepine and topiramate on cognitive functions and oxidative stress in PTZ-kindled mice. Seizure, 20(3), 257–262. https://doi.org/10.1016/j.seizure.2010.12.006

    Article  PubMed  Google Scholar 

  106. Ercal, N., Gurer-Orhan, H., & Aykin-Burns, N. (2001). Toxic metals and oxidative stress part I: Mechanisms involved in metal-induced oxidative damage. Current Topics in Medicinal Chemistry, 1(6), 529–539. https://doi.org/10.2174/1568026013394831

    Article  CAS  PubMed  Google Scholar 

  107. Emekli-Alturfan, E., Alev, B., Tunali, S., Oktay, S., Tunali-Akbay, T., Ozturk, L. K., Yanardag, R., & Yarat, A. (2015). Effects of edaravone on cardiac damage in valproic acid induced toxicity. Annals of Clinical & Laboratory Science, 45(2), 166–172.

    CAS  Google Scholar 

  108. Gezginci-Oktayoglu, S., Turkyilmaz, I. B., Ercin, M., Yanardag, R., & Bolkent, S. (2016). Vitamin U has a protective effect on valproic acid-induced renal damage due to its anti-oxidant, anti-inflammatory, and anti-fibrotic properties. Protoplasma, 253(1), 127–135. https://doi.org/10.1007/s00709-015-0796-3

    Article  CAS  PubMed  Google Scholar 

  109. Tong, V., Teng, X. W., Chang, T. K., & Abbott, F. S. (2005). Valproic acid I: Time course of lipid peroxidation biomarkers, liver toxicity, and valproic acid metabolite levels in rats. Toxicological Sciences, 86(2), 427–435. https://doi.org/10.1093/toxsci/kfi184

    Article  CAS  PubMed  Google Scholar 

  110. Silva, M. R., Correia, A. O., dos Santos, G. C. A., Parente, L. L. T., de Siqueira, K. P., Lima, D. G. S., Moura, J., da Silva Ribeiro, A. E., Costa, R. O., Lucetti, D. L., Lucetti, E. C. P., Neves, K. R. T., & de Barros Viana, G. S. (2018). Neuroprotective effects of valproic acid on brain ischemia are related to its HDAC and GSK3 inhibitions. Pharmacology Biochemistry and Behavior, 167, 17–28. https://doi.org/10.1016/j.pbb.2018.02.001

    Article  CAS  PubMed  Google Scholar 

  111. Poorrostami, A., Farokhi, F., & Heidari, R. (2014). Effect of hydroalcoholic extract of ginger on the liver of epileptic female rats treated with lamotrigine. Avicenna Journal of Phytomedicine, 4(4), 276.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Eren, İ, Nazıroğlu, M., & Demirdaş, A. (2007). Protective effects of lamotrigine, aripiprazole and escitalopram on depression-induced oxidative stress in rat brain. Neurochemical Research, 32(7), 1188–1195.

    Article  CAS  PubMed  Google Scholar 

  113. Sarangi, S. C., Kakkar, A. K., Kumar, R., & Gupta, Y. K. (2016). Effect of lamotrigine, levetiracetam & topiramate on neurobehavioural parameters & oxidative stress in comparison with valproate in rats. The Indian Journal of Medical Research, 144(1), 104. https://doi.org/10.4103/0971-5916.193296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azibe Yıldız.

Additional information

Communicated by Mitzi C. Glover.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yıldız, A., Vardı, N., Parlakpınar, H. et al. Effects of Low- and High-Dose Valproic Acid and Lamotrigine on the Heart in Female Rats. Cardiovasc Toxicol 22, 326–340 (2022). https://doi.org/10.1007/s12012-021-09714-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-021-09714-6

Keywords

Navigation