Log in

The Assessment of Selenium, Aluminum, and Zinc in Children with Autism Spectrum Disorder

  • Research
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

ASD is a complex condition defined by many causes, one of them being excessive concentrations of necessary and harmful chemicals in children. The serum, hair, and nails of children with ASD have lower levels of critical trace elements, according to studies. It is quite obvious that bio elements are involved in physiology and pathophysiology. Thus, this study examined trace element contents in serum samples from children with autism spectrum disorder (ASD), specifically zinc (Zn), aluminum (Al), and selenium (Se). The study also looked for links between trace element levels and autistic severity. The study included 47 children with autism spectrum disorder, and the Gilliam’s Scale was used for severity. The study also included 53 healthy kids with age and gender-matched with those of ASD. For serum trace element analysis, graphite furnace atomic absorption spectrophotometry was used. The study found significant decreases in selenium and zinc concentration (OR, 5.25; CI, 1.96 ~ 14.08; p < 0.001) and increases in aluminum level (OR, 39.34; CI, 8.20 ~ 89.45; p < 0.001) in children with ASD compared to the control group. The area under the curve (AUC) values of 0.85 for Se, 0.98 for Al, and 0.7 for Zn showed high sensitivity and specificity for all parameters. Results indicate a strong positive connection between ASD and their levels of selenium (Se) and zinc (Zn) (β, 0.48; CI, 0.280 ~ 0.679; p < 0.001 and β, 0.31; CI, 0.10 ~ 0.52; p = 0.005). There is a negative correlation between ASD and aluminum (Al) (β 0.83; CI, 0.71 ~ 0.95; p < 0.001). This element may be a biomarker for autism in youngsters. High odds ratio (OR) values indicate trace element risk in autistic children.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Hodges H, Fealko C, Soares N (2020) Autism spectrum disorder: definition, epidemiology, causes, and clinical evaluation. Transl Pediatr. 9(1):S55-65. https://doi.org/10.21037/tp.2019.09.09

    Article  PubMed  PubMed Central  Google Scholar 

  2. Wolf JM, Barton M, Jou R (2018) Autism spectrum disorder. Neuropsychol Cond Across Lifespan 45–60. https://doi.org/10.1007/978-3-319-95720-3_16

  3. Waterhouse LH, Waterhouse L (2013) Waterhouse Rethinking autism: Variation and complexity, 1st edn. Elsevier, New York, pp 73–75

  4. Shaw KA (2022) progress and disparities in early identification of autism spectrum disorder: autism and developmental disabilities monitoring network. J Am Acad Child Adolesc Psych 61(7):4–8. https://doi.org/10.1016/j.jaac.2021.11.019

    Article  Google Scholar 

  5. Zhou H, Xu X, Yan W, Zou X, Wu L, Luo X et al (2020) Prevalence of autism spectrum disorder in China: a nationwide multi-center population-based study among children aged 6 to 12 years. Neurosci Bull. 36(9):961–71. https://doi.org/10.1007/s12264-020-00530-6

    Article  PubMed  PubMed Central  Google Scholar 

  6. Rodrigues TS (2017) Settings Announcement Format _ Quote Question _ Answer Thumb _ Up Textsms. https://doi.org/10.3390/w11050921

  7. Saldanha Tschinkel PF, Bjørklund G, Conón LZZ, Chirumbolo S, Nascimento VA (2018) Plasma concentrations of the trace elements copper, zinc, and selenium in Brazilian children with autism spectrum disorder. Biomed Pharmacother. 106:605–9. https://doi.org/10.1016/j.biopha.2018.06.174

    Article  CAS  PubMed  Google Scholar 

  8. Zhang Y (2017) Trace elements and healthcare: a bioinformatics perspective. Adv Exp Med Biol 1005:63–98. https://doi.org/10.1007/978-981-10-5717-5_4

    Article  PubMed  Google Scholar 

  9. Bjørklund G (2013) The role of zinc and copper in autism spectrum disorders. Acta Neurobiol Exp (Wars) 73(2):225–236

    Article  PubMed  Google Scholar 

  10. Zalewska M, Trefon J, Milnerowicz H (2014) The role of metallothionein interactions with other proteins. Proteomics 14(11):1343–1356. https://doi.org/10.1002/pmic.201300496

    Article  CAS  PubMed  Google Scholar 

  11. Kielczykowska M, Kocot J, Pazdzior M, Musik I (2018) Selenium - a fascinating antioxidant of protective properties. Adv Clin Exp Med. 27(2):245–55. https://doi.org/10.17219/acem/67222.

    Article  PubMed  Google Scholar 

  12. Wang X, Zuo Z, Deng J, Zhang Z, Chen C, Fan Y et al (2018) Protective role of selenium in immune-relevant cytokine and immunoglobulin production by piglet splenic lymphocytes exposed to deoxynivalenol. Biol Trace Elem Res. 184(1):83–91. https://doi.org/10.1007/s12011-017-1160-6

    Article  CAS  PubMed  Google Scholar 

  13. He Y, Fang J, Peng X, Cui H, Zuo Z, Deng J et al (2014) Effects of sodium selenite on aflatoxin B1-induced decrease of ileal IgA+ cell numbers and immunoglobulin contents in broilers. Biol Trace Elem Res 160(1):49–55. https://doi.org/10.1007/s12011-014-0035-3

    Article  CAS  PubMed  Google Scholar 

  14. Liu X, Lin J, Zhang H, Khan NU, Zhang J, Tang X et al (2022) Oxidative stress in autism spectrum disorder—current progress of mechanisms and biomarkers. Front Psychiatry 13(1):1–35. https://doi.org/10.3389/fpsyt.2022.813304

    Article  Google Scholar 

  15. Leong YK, Chang JS (2020) Bioremediation of heavy metals using microalgae: recent advances and mechanisms. Bioresour Technol. 303(May):5–9. https://doi.org/10.1016/j.biortech.2020.122886

    Article  CAS  Google Scholar 

  16. Skalny AV, Simashkova NV, Klyushnik TP, Grabeklis AR, Radysh IV, Skalnaya MG et al (2017) Assessment of serum trace elements and electrolytes in children with childhood and atypical autism. J Trace Elem Med Biol. 43:9–14. https://doi.org/10.1016/j.jtemb.2016.09.009

    Article  CAS  PubMed  Google Scholar 

  17. Skalny AV, Simashkova NV, Klyushnik TP, Grabeklis AR, Radysh IV, Skalnaya MG et al (2017) Analysis of hair trace elements in children with autism spectrum disorders and communication disorders. Biol Trace Elem Res 177(2):215–223. https://doi.org/10.1007/s12011-016-0878-x

    Article  CAS  PubMed  Google Scholar 

  18. Rashaid AHB, Nusair SD, Alqhazo MT, Adams JB, Abu-Dalo MA, Bashtawi MA (2021) Heavy metals and trace elements in scalp hair samples of children with severe autism spectrum disorder: a case-control study on Jordanian children. J Trace Elem Med Biol 67(September):1–6. https://doi.org/10.1016/j.jtemb.2021.126790

    Article  CAS  Google Scholar 

  19. Fiore M, Barone R, Copat C, Grasso A, Cristaldi A, Rizzo R et al (2020) Metal and essential element levels in hair and association with autism severity. J Trace Elem Med Biol 57:31630927. https://doi.org/10.1016/j.jtemb.2019.126409

    Article  CAS  Google Scholar 

  20. Lord C, Elsabbagh M, Baird G, Veenstra-Vanderweele J (2018) Autism spectrum disorder. Lancet 392(10146):508–520. https://doi.org/10.1016/S0140-6736(18)31129-2

    Article  PubMed  PubMed Central  Google Scholar 

  21. Restrepo B, Angkustsiri K, Taylor SL, Rogers SJ, Cabral J, Heath B et al (2020) Developmental–behavioral profiles in children with autism spectrum disorder and co-occurring gastrointestinal symptoms. Autism Res 13(10):1778–1789. https://doi.org/10.1002/aur.2354

    Article  PubMed  PubMed Central  Google Scholar 

  22. Zhang J, Li X, Shen L, Khan NU, Zhang X, Chen L et al (2021) Trace elements in children with autism spectrum disorder: a meta-analysis based on case-control studies. J Trace Elem Med Biol 67:34049201. https://doi.org/10.1016/j.jtemb.2021.126782

    Article  CAS  Google Scholar 

  23. El-Ansary A, Bjørklund G, Tinkov AA, Skalny AV, Al Dera H (2017) Relationship between selenium, lead, and mercury in red blood cells of Saudi autistic children. Metab Brain Dis. 32(4):1073–80 (http://springer.longhoe.net/referenceworkentry/10.1007/978-1-4899-7502-7_739-1)

    Article  CAS  PubMed  Google Scholar 

  24. The World Health Organization (2007) Manual for the laboratory diagnosis of measles and rubella virus infection, 2nd edn. WHO, pp 1–109

  25. Mehdi Y, Hornick JL, Istasse L, Dufrasne I (2013) Selenium in the environment, metabolism and involvement in body functions. Molecules 18(3):3292–3311. https://doi.org/10.3390/molecules18033292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rayman MP (2012) Selenium and human health. Lancet. 379(9822):1256–68. https://doi.org/10.1016/S0140-6736(11)61452-9

    Article  CAS  PubMed  Google Scholar 

  27. Zhang ZH, Song GL (2021) Roles of selenoproteins in brain function and the potential mechanism of selenium in Alzheimer’s disease. Front Neurosci. 15:1–24. https://doi.org/10.3389/fnins.2021.646518

    Article  Google Scholar 

  28. Raymond LJ, Deth RC, Ralston NVC (2014) Potential role of selenoenzymes and antioxidant metabolism in relation to autism etiology and pathology. Autism Res Treat 2014:1–15. https://doi.org/10.1155/2014/164938

    Article  Google Scholar 

  29. Bjørklund G, Meguid NA, El-Bana MA, Tinkov AA, Saad K, Dadar M et al (2020) Oxidative stress in autism spectrum disorder. Mol Neurobiol. 57(5):2314–32. https://doi.org/10.1007/s12035-019-01742-2

    Article  CAS  PubMed  Google Scholar 

  30. Yui K, Kawasaki Y, Yamada H, Ogawa S (2016) Oxidative stress and nitric oxide in autism spectrum disorder and other neuropsychiatric disorders. CNS Neurol Disord - Drug Targets 15(5):587–596. https://doi.org/10.2174/1871527315666160413121751

    Article  CAS  PubMed  Google Scholar 

  31. Angelova PR, Myers I, Abramov AY (2023) Carbon monoxide neurotoxicity is triggered by oxidative stress induced by ROS production from three distinct cellular sources. Redox Biol 60(April):1–16. https://doi.org/10.1007/s00204-023-03562-9

    Article  CAS  Google Scholar 

  32. Manivasagam T, Arunadevi S, Essa MM, SaravanaBabu C, Borah A, Thenmozhi AJ et al (2020) Role of oxidative stress and antioxidants in autism. Adv Neurobiol 24:193–206. https://doi.org/10.1007/978-3-030-30402-7_7

    Article  PubMed  Google Scholar 

  33. Ming X, Johnson WG, Stenroos ES, Mars A, Lambert GH, Buyske S (2010) Genetic variant of glutathione peroxidase 1 in autism. Brain Dev 32(2):105–109. https://doi.org/10.1016/j.braindev.2008.12.017

    Article  PubMed  Google Scholar 

  34. Alim I, Caulfield JT, Chen Y, Swarup V, Geschwind DH, Ivanova E et al (2019) Selenium drives a transcriptional adaptive program to block ferroptosis and treat stroke. Cell 177(5):1262-1279.e25. https://doi.org/10.1016/j.cell.2019.03.032

    Article  CAS  PubMed  Google Scholar 

  35. Zhang ZH, Song GL (2021) Roles of selenoproteins in brain function and the potential mechanism of selenium in Alzheimer’s disease. Front Neurosci 15:1–24. https://doi.org/10.1016/j.toxlet.2013.11.016

    Article  CAS  Google Scholar 

  36. Lopes de Andrade V, Marreilha dos Santos AP, Aschner M (2021) Neurotoxicity of metal mixtures. Adv Neurotoxicol 5:329–364. https://doi.org/10.1007/978-3-319-60189-2_12

    Article  PubMed  PubMed Central  Google Scholar 

  37. Vinceti M, Filippini T, Del Giovane C, Dennert G, Zwahlen M, Brinkman M et al (2018) Selenium for preventing cancer. Cochrane Database Syst Rev. 2018(1). https://doi.org/10.1002/14651858.CD005195.pub4

  38. Blaylock R, Maroon J (2011) Immunoexcitotoxicity as a central mechanism in chronic traumatic encephalopathy-a unifying hypothesis. Surg Neurol Int 2(1):107. https://doi.org/10.4103/2152-7806.83391

    Article  PubMed  PubMed Central  Google Scholar 

  39. Bjørklund G, Skalny AV, Rahman MM, Dadar M, Yassa HA, Aaseth J et al (2018) Toxic metal(loid)-based pollutants and their possible role in autism spectrum disorder. Environ Res. 166:234–50. https://doi.org/10.1016/j.envres.2018.05.020

    Article  CAS  PubMed  Google Scholar 

  40. Strunecka A, Blaylock RL, Strunecky O (2016) Fluoride, aluminum, and aluminofluoride complexes in the pathogenesis of the autism spectrum disorders: a possible role of immunoexcitotoxicity. J Appl Biomed. 14(3):171–6. https://doi.org/10.4103/sni.sni_407_17

    Article  Google Scholar 

  41. Mold M, Umar D, King A, Exley C (2018) Aluminium in brain tissue in autism. J Trace Elem Med Biol. 46:76–82. https://doi.org/10.1016/j.jtemb.2017.11.012

    Article  CAS  PubMed  Google Scholar 

  42. Melendez L (2013) Aluminum and other metals may pose a risk to children with autism spectrum disorder: biochemical and behavioural impairments. Clin Exp Pharmacol 03(01):1–9. https://doi.org/10.4172/2161-1459.1000120

    Article  Google Scholar 

  43. Sheth SKS, Li Y, Shaw CA (2018) Is exposure to aluminum adjuvants associated with social impairments in mice? A pilot study. J Inorg Biochem. 181:96–103. https://doi.org/10.1016/j.**orgbio.2017.11.012

    Article  CAS  PubMed  Google Scholar 

  44. Wise JP, Young JL, Cai J, Cai L (2022) Current understanding of hexavalent chromium [Cr (VI)] neurotoxicity and new perspectives. 158. Environ Int 158:1–44. https://doi.org/10.1016/j.envint.2021.106877

    Article  CAS  Google Scholar 

  45. Ashmawi NS, Hammoda MA (2022) Early prediction and evaluation of risk of autism spectrum disorders. Cureus 14(3):1–10. https://doi.org/10.7759/cureus.23465

    Article  Google Scholar 

  46. Neurobiology PM, Journal E (2021) Neurobiology of zinc a nd its role in neurogenesis Background bbreviations. 1–28. https://doi.org/10.1007/s00394-020-02454-3

  47. Szewczyk B (2013) Zinc homeostasis and neurodegenerative disorders. Front Aging Neurosci 5(JUL):1–43. https://doi.org/10.3389/fnagi.2013.00033

    Article  CAS  Google Scholar 

  48. Choi S, Hong DK, Choi BY, Suh SW (2020) Zinc in the brain: friend or foe? Int J Mol Sci 21(23):1–24. https://doi.org/10.3390/ijms21238941

    Article  CAS  Google Scholar 

  49. Summersgill H, England H, Lopez-Castejon G, Lawrence CB, Luheshi NM, Pahle J et al (2014) Zinc depletion regulates the processing and secretion of IL-1β. Cell Death Dis 5:3–4. https://doi.org/10.1038/cddis.2013.547

    Article  CAS  Google Scholar 

  50. Bonaventura P, Benedetti G, Albarède F, Miossec P (2015) Zinc and its role in immunity and inflammation. Autoimmun Rev 14(4):277–285. https://doi.org/10.1016/j.autrev.2014.11.0.08

    Article  CAS  PubMed  Google Scholar 

  51. Kirsten TB, Queiroz-Hazarbassanov N, Bernardi MM, Felicio LF (2015) Prenatal zinc prevents communication impairments and BDNF disturbance in a rat model of autism induced by prenatal lipopolysaccharide exposure. Life Sci 130:12–7. https://doi.org/10.1016/j.lfs.2015.02.027

    Article  CAS  PubMed  Google Scholar 

  52. Gower-Winter SD, Levenson CW (2012) Zinc in the central nervous system: from molecules to behavior. BioFactors 38(3):186–193. https://doi.org/10.1002/biof.1012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Prakash A, Bharti K, Majeed ABA (2015) Zinc: indications in brain disorders. Fundam Clin Pharmacol. 29(2):131–49. https://doi.org/10.1111/fcp.12110

    Article  CAS  PubMed  Google Scholar 

  54. Physiological PM, Journal T (2017) Physiological roles of zinc transporters: molecular and genetic import a nce in zinc homeostasis. https://doi.org/10.1007/s12576-017-0521-4

  55. Ahmed S, Venkatesan G, Prapul DS, Md AR (2023) Zebrafish as a comprehensive model of neurological diseases. Int J Sci Res Arch. 10(1):018–052. https://doi.org/10.30574/ijsra.2023.10.1.0696

    Article  Google Scholar 

  56. ** hippocampus. Proc Natl Acad Sci U S A 107(14):6510–6515. https://doi.org/10.1073/pnas.0912315107

    Article  PubMed  PubMed Central  Google Scholar 

  57. De Souza AS, Fernandes FS, das Graças Tavares do Carmo M (2011) Effects of maternal malnutrition and postnatal nutritional rehabilitation on brain fatty acids, learning, and memory. Nutr Rev 69(3):132–144. https://doi.org/10.1111/j.1753-4887.2011.00374.x

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Study design and conception, proofreading, and statistical analysis by Narjis Hadi Al-Saadi. Material preparation, data collection, analysis, and writing—first draft by Ali Fadheel Hamoud. Interpretation of the results by Narjis Hadi Al-Saadi and Ali Fadheel Hamoud.

Corresponding author

Correspondence to Ali Fadheel Hamoud.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamoud, A.F., Al-Saadi, N.H. The Assessment of Selenium, Aluminum, and Zinc in Children with Autism Spectrum Disorder. Biol Trace Elem Res (2024). https://doi.org/10.1007/s12011-024-04283-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12011-024-04283-5

Keywords

Navigation