Log in

Exploring the Correlation Between Varied Serum Iodine Nutritional Levels and Anti-Thyroglobulin Antibodies

  • Research
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Iodine deficiency results in elevated thyroglobulin (Tg) concentrations, with high iodine Tg being more immunogenic than low iodine Tg. The study investigated the correlation between serum iodine concentration and thyroglobulin autoantibody (TgAb) levels across diverse iodine nutritional statuses as determined by urine iodine concentration (UIC). Demographic information was collected from 1,482 participants through a questionnaire. Blood and spot urine were collected to measure thyroid-stimulating hormone (TSH), TgAb, thyroid anti-peroxidase antibody (TPOAb), serum iodine (SIC), serum non-protein-bound iodine (snPBI), urine iodine (UIC), creatinine (UCr). The median UIC and SIC were 146.5 μg/L and 74.9 μg/L, respectively. A linear relationship was observed between SIC, snPBI, and serum-protein-bound iodine (sPBI) (P < 0.001). The 90% reference intervals for SIC, snPBI, and sPBI were 50.7–120.7 μg/L, 21.9–52.9 μg/L, and 19.7–77.9 μg/L, respectively. The prevalence of elevated TgAb levels was significantly higher in women than in men (P < 0.001). Both low and high levels of snPBI and sPBI were associated with an increased risk of elevated TgAb levels. In women, the risk of positive TgAb in the group below the reference value of snPBI (OR = 2.079, 95%CI: 1.166, 3.705) and sPBI (OR = 2.578, 95%CI: 1.419, 4.684) was higher. In men, the risk of positive TgAb in the group below the reference value of SIC was higher (OR = 3.395, 95%CI: 1.286, 8.962). Iodine might exert an influence on TgAb levels through its binding to proteins, primarily Tg, thereby altering the iodine content of Tg. The interplay of gender factors further enhanced the risk of TgAb emergence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

Abbreviations

Tg:

Thyroglobulin

TgAb:

Thyroglobulin antibody

TSH:

Thyroid-stimulating hormone

TPOAb:

Thyroid anti-peroxidase antibody

SIC:

Serum iodine concentration

SnPBI:

Serum non-protein-bound iodine

UIC:

Urine iodine concentration

UCr:

Urine creatinine

References

  1. Triggiani V, Tafaro E, Giagulli VA, Sabbà C, Resta F, Licchelli B, Guastamacchia E (2009) Role of iodine, selenium and other micronutrients in thyroid function and disorders. Endocr Metab Immune Disord Drug Targets 9:277–294. https://doi.org/10.2174/187153009789044392

    Article  CAS  PubMed  Google Scholar 

  2. Guastamacchia E, Giagulli V, Licchelli B, Triggiani V (2015) Selenium and Iodine in Autoimmune Thyroiditis. Endocr Metab Immune Disord-Drug Targets 15:288–292. https://doi.org/10.2174/1871530315666150619094242

    Article  CAS  PubMed  Google Scholar 

  3. Zhao J, van der Haar F (2004) Progress in salt iodization and improved iodine nutrition in China, 1995–99. Food Nutr Bull 25:337–343. https://doi.org/10.1177/156482650402500403

    Article  PubMed  Google Scholar 

  4. Sun D, Codling K, Chang S, Zhang S, Shen H, Su X, Chen Z, Scherpbier RW, Yan J (2017) Eliminating iodine deficiency in China: achievements, challenges and global implications. Nutrients 9:361. https://doi.org/10.3390/nu9040361

    Article  PubMed  PubMed Central  Google Scholar 

  5. Li Y, Teng D, Ba J, Chen B, Du J, He L, Lai X, Teng X, Shi X, Li Y, Chi H, Liao E, Liu C, Liu L, Qin G, Qin Y, Quan H, Shi B, Sun H, Tang X, Tong N, Wang G, Zhang J-A, Wang Y, Xue Y, Yan L, Yang J, Yang L, Yao Y, Ye Z, Zhang Q, Zhang L, Zhu J, Zhu M, Ning G, Mu Y, Zhao J, Shan Z, Teng W (2020) Efficacy and safety of long-term universal salt iodization on thyroid disorders: epidemiological evidence from 31 Provinces of Mainland China. Thyroid Off J Am Thyroid Assoc 30:568–579. https://doi.org/10.1089/thy.2019.0067

    Article  CAS  Google Scholar 

  6. Banga JP, Schott M (2018) Autoimmune Thyroid Diseases. Horm Metab Res Horm Stoffwechselforschung Horm Metab 50:837–839. https://doi.org/10.1055/a-0799-5068

    Article  CAS  Google Scholar 

  7. Hamada N, Noh JY, Okamoto Y, Ueda M, Konishi T, Fujisawa T, Ito K, Ito K (2010) Measuring thyroglobulin autoantibodies by sensitive assay is important for assessing the presence of thyroid autoimmunity in areas with high iodine intake. Endocr J 57:645–649. https://doi.org/10.1507/endocrj.k09e-353

    Article  CAS  PubMed  Google Scholar 

  8. Dong YH, Fu DG (2014) Autoimmune thyroid disease: mechanism, genetics and current knowledge. Eur Rev Med Pharmacol Sci 18:3611–3618

    CAS  PubMed  Google Scholar 

  9. Ragusa F, Fallahi P, Elia G, Gonnella D, Paparo SR, Giusti C, Churilov LP, Ferrari SM, Antonelli A (2019) Hashimotos’ thyroiditis: epidemiology, pathogenesis, clinic and therapy. Best Pract Res Clin Endocrinol Metab 33:101367. https://doi.org/10.1016/j.beem.2019.101367

    Article  PubMed  Google Scholar 

  10. Tomer Y, Huber A (2009) The etiology of autoimmune thyroid disease: a story of genes and environment. J Autoimmun 32:231–239. https://doi.org/10.1016/j.jaut.2009.02.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mariotti S, Caturegli P, Piccolo P, Barbesino G, Pinchera A (1990) Antithyroid peroxidase autoantibodies in thyroid diseases. J Clin Endocrinol Metab 71:661–669. https://doi.org/10.1210/jcem-71-3-661

    Article  CAS  PubMed  Google Scholar 

  12. Chaker L, Razvi S, Bensenor IM, Azizi F, Pearce EN, Peeters RP (2022) Hypothyroidism. Nat Rev Dis Primer 8:30. https://doi.org/10.1038/s41572-022-00357-7

    Article  Google Scholar 

  13. Toyoda N, Nishikawa M, Iwasaka T (1999) Anti-thyroglobulin antibodies. Nihon Rinsho Jpn J Clin Med 57:1810–1814

    CAS  Google Scholar 

  14. ** M, Zhang Z, Li Y, Teng D, Shi X, Ba J, Chen B, Du J, He L, Lai X, Teng X, Li Y, Chi H, Liao E, Liu C, Liu L, Qin G, Qin Y, Quan H, Shi B, Sun H, Tang X, Tong N, Wang G, Zhang J, Wang Y, Xue Y, Yan L, Yang J, Yang L, Yao Y, Ye Z, Zhang Q, Zhang L, Zhu J, Zhu M, Ning G, Mu Y, Zhao J, Teng W, Shan Z (2020) U-Shaped associations between urinary iodine concentration and the prevalence of metabolic disorders: a cross-sectional study. Thyroid 30:1053–1065. https://doi.org/10.1089/thy.2019.0516

    Article  CAS  PubMed  Google Scholar 

  15. WHO/ICCIDD (2007) Assessment of iodine deficiency disorders and monitoring their elimination: a guide for program managers, 3rd edn. WHO, Geneva

  16. Brix TH, Kyvik KO, Christensen K, Hegedüs L (2001) Evidence for a major role of heredity in Graves’ disease: a population-based study of two Danish twin cohorts. J Clin Endocrinol Metab 86:930–934. https://doi.org/10.1210/jcem.86.2.7242

    Article  CAS  PubMed  Google Scholar 

  17. Wang F, Li C, Li S, Cui L, Zhao J, Liao L (2023) Selenium and thyroid diseases. Front Endocrinol 14:1133000. https://doi.org/10.3389/fendo.2023.1133000

    Article  Google Scholar 

  18. Antonelli A, Ferrari SM, Ragusa F, Elia G, Paparo SR, Ruffilli I, Patrizio A, Giusti C, Gonnella D, Cristaudo A, Foddis R, Shoenfeld Y, Fallahi P (2020) Graves’ disease: epidemiology, genetic and environmental risk factors and viruses. Best Pract Res Clin Endocrinol Metab 34:101387. https://doi.org/10.1016/j.beem.2020.101387

    Article  CAS  PubMed  Google Scholar 

  19. Wang W, Mao J, Zhao J, Lu J, Yan L, Du J, Lu Z, Wang H, Xu M, Bai X, Zhu L, Fan C, Wang H, Zhang H, Shan Z, Teng W (2018) Decreased thyroid peroxidase antibody titer in response to selenium supplementation in autoimmune thyroiditis and the influence of a selenoprotein P Gene Polymorphism: a prospective, multicenter study in China. Thyroid Off J Am Thyroid Assoc 28:1674–1681. https://doi.org/10.1089/thy.2017.0230

    Article  CAS  Google Scholar 

  20. Zhu L, Bai X, Teng W, Shan Z, Wang W, Fan C, Wang H, Zhang H (2012) Effects of selenium supplementation on antibodies of autoimmune thyroiditis. Zhonghua Yi Xue Za Zhi 92:2256–2260

    CAS  PubMed  Google Scholar 

  21. Qiu Y, **ng Z, **ang Q, Yang Q, Zhu J, Su A (2021) Insufficient evidence to support the clinical efficacy of selenium supplementation for patients with chronic autoimmune thyroiditis. Endocrine 73:384–397. https://doi.org/10.1007/s12020-021-02642-z

    Article  CAS  PubMed  Google Scholar 

  22. Winther KH, Wichman JEM, Bonnema SJ, Hegedüs L (2017) Insufficient documentation for clinical efficacy of selenium supplementation in chronic autoimmune thyroiditis, based on a systematic review and meta-analysis. Endocrine 55:376–385. https://doi.org/10.1007/s12020-016-1098-z

    Article  CAS  PubMed  Google Scholar 

  23. Rayman MP (2019) Multiple nutritional factors and thyroid disease, with particular reference to autoimmune thyroid disease. Proc Nutr Soc 78:34–44. https://doi.org/10.1017/S0029665118001192

    Article  CAS  PubMed  Google Scholar 

  24. Hess SY, Zimmermann MB, Arnold M, Langhans W, Hurrell RF (2002) Iron deficiency anemia reduces thyroid peroxidase activity in rats. J Nutr 132:1951–1955. https://doi.org/10.1093/jn/132.7.1951

    Article  CAS  PubMed  Google Scholar 

  25. Lu Y, Li J, Li J (2016) Estrogen and thyroid diseases: an update. Minerva Med 107:239–244

    PubMed  Google Scholar 

  26. Mintziori G, Goulis DG, Toulis KA, Venetis CA, Kolibianakis EM, Tarlatzis BC (2011) Thyroid function during ovarian stimulation: a systematic review. Fertil Steril 96:780–785. https://doi.org/10.1016/j.fertnstert.2011.06.020

    Article  CAS  PubMed  Google Scholar 

  27. Mallawa Kankanamalage O, Zhou Q, Li X (2021) Understanding the pathogenesis of gestational hypothyroidism. Front Endocrinol 12:653407. https://doi.org/10.3389/fendo.2021.653407

    Article  Google Scholar 

  28. Carayanniotis G (2007) Recognition of thyroglobulin by T cells: the role of iodine. Thyroid Off J Am Thyroid Assoc 17:963–973. https://doi.org/10.1089/thy.2007.0199

    Article  CAS  Google Scholar 

  29. Medeiros-Neto G, Targovnik HM, Vassart G (1993) Defective thyroglobulin synthesis and secretion causing goiter and hypothyroidism. Endocr Rev 14:165–183. https://doi.org/10.1210/edrv-14-2-165

    Article  CAS  PubMed  Google Scholar 

  30. Mammen JSR, Cappola AR (2021) Autoimmune Thyroid Disease in Women. JAMA 325:2392–2393. https://doi.org/10.1001/jama.2020.22196

    Article  PubMed  PubMed Central  Google Scholar 

  31. Feldt-Rasmussen U (1983) Serum Thyroglobulin and Thyroglobulin Autoantibodies in Thyroid Diseases. Allergy 38:369–387. https://doi.org/10.1111/j.1398-9995.1983.tb05081.x

    Article  CAS  PubMed  Google Scholar 

  32. Zimmermann MB, Jooste PL, Pandav CS (2008) Iodine-deficiency disorders. The Lancet 372:1251–1262. https://doi.org/10.1016/S0140-6736(08)61005-3

    Article  CAS  Google Scholar 

  33. Rasmussen LB, Ovesen L, Christiansen E (1999) Day-to-day and within-day variation in urinary iodine excretion. Eur J Clin Nutr 53:401–407. https://doi.org/10.1038/sj.ejcn.1600762

    Article  CAS  PubMed  Google Scholar 

  34. Xu T, Guo W, Ren Z, Wei H, Tan L, Zhang W (2022) Study on the relationship between serum iodine and thyroid dysfunctions: a cross-sectional study. Biol Trace Elem Res. https://doi.org/10.1007/s12011-022-03459-1

    Article  PubMed  PubMed Central  Google Scholar 

  35. Nicola JP, Basquin C, Portulano C, Reyna-Neyra A, Paroder M, Carrasco N (2009) The Na+/I- symporter mediates active iodide uptake in the intestine. Am J Physiol Cell Physiol 296:C654-662. https://doi.org/10.1152/ajpcell.00509.2008

    Article  CAS  PubMed  Google Scholar 

  36. ** X, Jiang P, Liu L, Jia Q, Liu P, Meng F, Zhang X, Guan Y, Pang Y, Lu Z, Shen H (2017) The application of serum iodine in assessing individual iodine status. Clin Endocrinol (Oxf) 87:807–814. https://doi.org/10.1111/cen.13421

    Article  CAS  PubMed  Google Scholar 

  37. Peng J, Zheng L, **ng J, Lixiang L, Yi P, Yunfeng G, Hongmei S (2016) A preliminary study on medical reference range of serum iodine in adults of normal thyroid function. Chin J Endem 35:786–789. https://doi.org/10.3760/cma.j.issn.2095-4255.2016.11.002

    Article  Google Scholar 

  38. Meng L-H, Chen C-H, Liu Y, Liang X-H, Zhou J, **an J, Li L, Zhang J, Huang Z-X, Qin Y-F (2022) Epidemiological survey of the status of iodine nutrition and thyroid diseases in Guangxi, China. J Trace Elem Med Biol Organ Soc Miner Trace Elem GMS 70:126918. https://doi.org/10.1016/j.jtemb.2021.126918

    Article  CAS  Google Scholar 

  39. Andersen S, Iversen F, Terpling S, Pedersen KM, Gustenhoff P, Laurberg P (2009) More hypothyroidism and less hyperthyroidism with sufficient iodine nutrition compared to mild iodine deficiency–a comparative population-based study of older people. Maturitas 64:126–131. https://doi.org/10.1016/j.maturitas.2009.08.007

    Article  CAS  PubMed  Google Scholar 

  40. McGrogan A, Seaman HE, Wright JW, de Vries CS (2008) The incidence of autoimmune thyroid disease: a systematic review of the literature. Clin Endocrinol (Oxf) 69:687–696. https://doi.org/10.1111/j.1365-2265.2008.03338.x

    Article  PubMed  Google Scholar 

  41. Zhang X, Yuan N, Sun J, Zhao X, Du J, Nan M, Zhang Q, Ji L (2022) Association between iodine nutritional status and adverse pregnancy outcomes in Bei**g, China: a single-center cohort study. Biol Trace Elem Res 200:2620–2628. https://doi.org/10.1007/s12011-021-02887-9

    Article  CAS  PubMed  Google Scholar 

  42. Hurrell RF (1997) Bioavailability of iodine. Eur J Clin Nutr 51(Suppl 1):S9-12

    PubMed  Google Scholar 

  43. Citterio CE, Targovnik HM, Arvan P (2019) The role of thyroglobulin in thyroid hormonogenesis. Nat Rev Endocrinol 15:323–338. https://doi.org/10.1038/s41574-019-0184-8

    Article  CAS  PubMed  Google Scholar 

  44. Dunn AD, Corsi CM, Myers HE, Dunn JT (1998) Tyrosine 130 is an important outer ring donor for thyroxine formation in thyroglobulin. J Biol Chem 273:25223–25229. https://doi.org/10.1074/jbc.273.39.25223

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to express our gratitude to the School of Public Health, Tian** Medical University, Tian** Key Laboratory of Environment, Nutrition, and Public Health, and the Center for International Collaborative Research on Environment, Nutrition, and Public Health for creating a conducive environment for sample testing and facilitating the writing of this paper. Their support has been invaluable in the successful execution of our research.

Funding

This work was supported by grants from the National Science Foundation of China (grant numbers 82073549 and 81703218).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Qiuyi Song, Tingting Xu, Yu Wang, and Hongyan Wei. Feng Tan assists with sample collection and clinical diagnosis. The first draft of the manuscript was written by Qiuyi Song and Tingting Xu, and all authors commented on the previous manuscript. All authors read and approved the final manuscript.

Song Qiuyi and Tingting Xu make an equal contribution to the article.

Corresponding author

Correspondence to Long Tan.

Ethics declarations

Ethics Approval

This study was conducted according to the guidelines laid down in the Declaration of Helsinki and all procedures involving research study participants were approved by the Medical Ethics Committee of Tian** Medical University (serial number: IRB[2013]115). Informed consent was obtained from all individual participants included in the study.

Consent to Participate

Informed consent was obtained from all individual participants included in the study.

Consent to Publish

Participants have consented to the submission of this cross-sectional study to the journal.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, Q., Xu, T., Wang, Y. et al. Exploring the Correlation Between Varied Serum Iodine Nutritional Levels and Anti-Thyroglobulin Antibodies. Biol Trace Elem Res (2024). https://doi.org/10.1007/s12011-024-04275-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12011-024-04275-5

Keywords

Navigation