Log in

Selenium Nanoparticles: Revolutionizing Nutrient Enhancement in Aquaculture – A Review

  • Review
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Aquaculture, a cornerstone of global food production, confronts myriad challenges including disease outbreaks and environmental degradation. Achieving nutritionally balanced aquafeed is critical for sustainable production, prompting exploration into innovative solutions like selenium nanoparticles (SeNPs). SeNPs offer potent antimicrobial, antioxidant, and growth-promoting properties, bolstering gut immunity and digestive capacity in aquatic animals. Their high bioavailability and ability to traverse gut barriers make them promising candidates for aquafeed supplementation. This study investigates SeNPs as a cutting-edge solution to enhance nutrient supply in aquaculture, addressing key challenges while promoting environmental stewardship and food security. By synthesizing current research and highlighting future directions, this review provides valuable insights into sustainable aquaculture practices. SeNPs hold promise for revolutionizing aquaculture feed formulations, offering a pathway to improved production outcomes and environmental sustainability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Abarike ED, Kuebutornye FK, Jian J, Tang J, Lu Y, Cai J (2019) Influences of immunostimulants on phagocytes in cultured fish: a mini review. Rev Aquac 11(4):1219–1227

    Article  Google Scholar 

  2. Abd El-Kader MF, El-Bab AFF, Shoukry M, Abdel-Warith AWA, Younis EM, Moustafa EM, Dawood MA (2020) Evaluating the possible feeding strategies of Se nanoparticles on the growth rate and wellbeing of European seabass (Dicentrarchus labrax). Aquac Rep 18:100539

    Article  Google Scholar 

  3. Abd El-Kader MF, Fath El-Bab AF, Abd-Elghany MF, Abdel-Warith AWA, Younis EM, Dawood MA (2021) Se nanoparticles act potentially on the growth performance, hemato-biochemical indices, antioxidative, and immune-related genes of European seabass (Dicentrarchus labrax). Biol Trace Elem Res 199:3126–3134

    Article  CAS  PubMed  Google Scholar 

  4. Abu-Elala NM, Shaalan M, Ali SE, Younis NA (2021) Immune responses and protective efficacy of diet supplementation with Se nanoparticles against cadmium toxicity in Oreochromis niloticus. Aquac Res 52(8):3677–3686

    Article  CAS  Google Scholar 

  5. Ahsan U, Kamran Z, Raza I, Ahmad S, Babar W, Riaz MH, Iqbal Z (2014) Role of Se in male reproduction—a review. Anim Reprod Sci 146(1–2):55–62

    Article  CAS  PubMed  Google Scholar 

  6. Al-Deriny SH, Dawood MA, Elbialy ZI, El-Tras WF, Mohamed RA (2020) Se nanoparticles and spirulina alleviate growth performance, hemato-biochemical, immune-related genes, and heat shock protein in Nile tilapia (Oreochromis niloticus). Biol Trace Elem Res 198:661–668

    Article  CAS  PubMed  Google Scholar 

  7. Asche F (2015) E15 Initiative | aquaculture: opportunities and challenges [WWW Document]. e15 initiative.org. URL http://e15initiative.org/publications/aquacultureopportunities-challenges/. Accessed 11 Oct 2019

  8. Ashouri S, Keyvanshokooh S, Salati AP, Johari SA, Pasha-Zanoosi H (2015) Effects of different levels of dietary Se nanoparticles on growth performance, muscle composition, blood biochemical profiles and antioxidant status of common carp (Cyprinus carpio). Aquaculture 446:25–29

    Article  CAS  Google Scholar 

  9. Avery JC, Hoffmann PR (2018) Se, selenoproteins, and immunity. Nutrients 10(9):1203

    Article  PubMed  PubMed Central  Google Scholar 

  10. Ayoub HF, Tohamy EY, Salama HM, Mohamed SS (2021) Citrullus colocynthis extract and synthesized Se nanoparticles enhance non-specific response and resistance against Aeromonas sobria in Nile tilapia (Oreochromis niloticus). Aquac Res 52(10):4969–4982

    Article  CAS  Google Scholar 

  11. Bai Z, Ren T, Han Y, Hu Y, Schohel MR, Jiang Z (2019) Effect of dietary bio-fermented Se on growth performance, nonspecific immune enzyme, proximate composition and bioaccumulation of zebrafish (Danio rerio). Aquac Rep 13:100180

    Article  Google Scholar 

  12. Chen H, Li J, Yan L, Cao J, Li D, Huang GY, **e L (2020) Subchronic effects of dietary Se yeast and selenite on growth performance and the immune and antioxidant systems in Nile tilapia Oreochromis niloticus. Fish Shellfish Immunol 97:283–293

    Article  CAS  PubMed  Google Scholar 

  13. Chen YJ, Liu YJ, Tian LX, Niu J, Liang GY, Yang HJ, Yuan Y, Zhang YQ (2013) Effect of dietary vitamin E and selenium supplementation on growth, body composition, and antioxidant defense mechanism in juvenile largemouth bass (Micropterus salmoide) fed oxidized fish oil. Fish Physiol Biochem 39:593–604

    Article  CAS  PubMed  Google Scholar 

  14. D Baldissera M, Souza CF, Alessio KO, Krawczak KW, Abbad LB, da Silva AS, Cunha MA (2020) Diphenyl diselenide-loaded nanocapsules in silver catfish feed enhance growth, improve muscle antioxidant/oxidant status and increase Se deposition: advantages of nanotechnology for fish health. Aquac Res 51(10):4196–4205

    Article  CAS  Google Scholar 

  15. Dar AH, Rashid N, Majid I, Hussain S, Dar MA (2020) Nanotechnology interventions in aquaculture and seafood preservation. Crit Rev Food Sci Nutr 60(11):1912–1921

    Article  CAS  PubMed  Google Scholar 

  16. Darmawangsa GM, Suprayudi MA, Utomo NP, Ekasari J (2021) Dietary supplementation of organic Se to improve growth performance and protein utilization in African catfish fed with different protein level diets. Jurnal Akuakultur Indonesia 20(2):130–138

    Article  Google Scholar 

  17. Dawit Moges F, Hamdi H, Al-Barty A, Zaid AA, Sundaray M, Parashar SKS, Das B (2022) Effects of Se nanoparticle on the growth performance and nutritional quality in Nile Tilapia. Oreochromis niloticus PloS one 17(6):e0268348

    Article  CAS  PubMed  Google Scholar 

  18. Dawood MA, Basuini MFE, Yilmaz S, Abdel-Latif HM, Kari ZA, Abdul Razab MKA, … Gewaily MS (2021a) Selenium nanoparticles as a natural antioxidant and metabolic regulator in aquaculture: a review. Antioxidants 10(9):1364

  19. Dawood MA, El Basuini MF, Zaineldin AI, Yilmaz S, Hasan MT, Ahmadifar E, Sewilam H (2021b) Antiparasitic and antibacterial functionality of essential oils: an alternative approach for sustainable aquaculture. Pathogens 10(2):185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dawood MA, Koshio S, Zaineldin AI, Van Doan H, Ahmed HA, Elsabagh M, Abdel-Daim MM (2019a) An evaluation of dietary Se nanoparticles for red sea bream (Pagrus major) aquaculture: growth, tissue bioaccumulation, and antioxidative responses. Environ Sci Pollut Res 26:30876–30884

    Article  CAS  Google Scholar 

  21. Dawood MA, Koshio S, Zaineldin AI, Van Doan H, Moustafa EM, Abdel-Daim MM, Hassaan MS (2019b) Dietary supplementation of Se nanoparticles modulated systemic and mucosal immune status and stress resistance of red sea bream (Pagrus major). Fish Physiol Biochem 45:219–230

    Article  CAS  PubMed  Google Scholar 

  22. Dawood MA, Noreldin AE, Sewilam H (2021c) Long term salinity disrupts the hepatic function, intestinal health, and gills antioxidative status in Nile tilapia stressed with hypoxia. Ecotoxicol Environ Saf 220:112412

    Article  CAS  PubMed  Google Scholar 

  23. Dawood MA, Zommara M, Eweedah NM, Helal AI (2020a) Synergistic effects of Se nanoparticles and vitamin E on growth, immune-related gene expression, and regulation of antioxidant status of Nile tilapia (Oreochromis niloticus). Biol Trace Elem Res 195:624–635

    Article  CAS  PubMed  Google Scholar 

  24. Dawood MA, Zommara M, Eweedah NM, Helal AI (2020b) The evaluation of growth performance, blood health, oxidative status and immune-related gene expression in Nile tilapia (Oreochromis niloticus) fed dietary nanoSe spheres produced by lactic acid bacteria. Aquaculture 515

  25. Domínguez D, Sehnine Z, Castro P, Robaina L, Fontanillas R, Prabhu PAJ, Izquierdo M (2020) Optimum Se levels in diets high in plant-based feedstuffs for gilthead sea bream (Sparus aurata) fingerlings. Aquac Nutr 26(2):579–589

    Article  Google Scholar 

  26. Du LC, Yu HR, Li LY, Zhang Q, Tian Q, Liu JQ, Shan LL (2021) Dietary Se requirement of coho salmon (Oncorhynchus kisutch W.) alevins. Aquacult Int 29:2291–2304

    Article  CAS  Google Scholar 

  27. Eissa ESH, Bazina WK, Abd El-Aziz YM, Abd Elghany NA, Tawfik WA, Mossa MI, … Khalil HS (2023) Nano-selenium impacts on growth performance, digestive enzymes, antioxidant, immune resistance and histopathological scores of Nile tilapia, Oreochromis niloticus against Aspergillus flavus infection. Aquac Int 1–25

  28. El-Sharawy ME, Hamouda M, Soliman AA, Amer AA, El-Zayat AM, Sewilam H, … Dawood MA (2021) Se nanoparticles are required for the optimum growth behavior, antioxidative capacity, and liver wellbeing of Striped catfish (Pangasianodon hypophthalmus). Saudi J Biol Sci 28(12):7241–7247

  29. Fajardo C, Martinez-Rodriguez G, Blasco J, Mancera JM, Thomas B, De Donato M (2022) Nanotechnology in aquaculture: applications, perspectives and regulatory challenges. Aquac Fish 7:185–200

    Article  Google Scholar 

  30. Fontagné-Dicharry S, Véron V, Larroquet L, Godin S, Wischhusen P, Aguirre P, … Kaushik SJ (2020) Effect of Se sources in plant-based diets on antioxidant status and oxidative stress-related parameters in rainbow trout juveniles under chronic stress exposure. Aquaculture 529:73568

  31. Gawor A, Ruszczynska A, Czauderna M, Bulska E (2020) Determination of Se species in muscle, heart, and liver tissues of lambs using mass spectrometry methods. Animals 10(5):808

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ghaffarizadeh A, Sotoudeh E, Mozanzadeh MT, Sanati AM, Ghasemi A (2022) Supplementing dietary Se nano-particles increased growth, antioxidant capacity and immune-related genes transcription in Pacific whiteleg shrimp (Penaeus vannamei) juveniles. Aquac Rep 25:101215

    Article  Google Scholar 

  33. Ghazi S, Diab AM, Khalafalla MM, Mohamed RA (2021) Synergistic effects of Se and zinc oxide nanoparticles on growth performance, hemato-biochemical profile, immune and oxidative stress responses, and intestinal morphometry of Nile tilapia (Oreochromis niloticus). Biol Trace Elem Res 1–11

  34. Ghafarifarsani H, Hoseinifar SH, Raeeszadeh M, Vijayaram S, Rohani MF, Van Doan H, Sun YZ (2024a) Comparative effect of chemical and green zinc nanoparticles on the growth, hematology, serum biochemical, antioxidant parameters, and immunity in serum and mucus of goldfish, Carassius auratus (Linnaeus, 1758). Biol Trace Elem Res 202(3):1264–1278

    Article  CAS  PubMed  Google Scholar 

  35. Ghafarifarsani H, Rohani MF, Raeeszadeh M, Ahani S, Yousefi M, Talebi M, Hossain MS (2024b) Pesticides and heavy metal toxicity in fish and possible remediation–a review. Ann Anim Sci

  36. Hajirezaee S, Mohammadi G, Naserabad SS (2020) The protective effects of vitamin C on common carp (Cyprinus carpio) exposed to titanium oxide nanoparticles (TiO2-NPs). Aquaculture 518:734734

    Article  CAS  Google Scholar 

  37. Hajirezaee S, Ajdari A, Azhang B (2021) Metabolite profiling, histological and oxidative stress responses in the grey mullet, Mugil cephalus exposed to the environmentally relevant concentrations of the heavy metal, Pb (NO3) 2. Comp Biochem Physiol C: Toxicol Pharmacol 244:109004

    CAS  PubMed  Google Scholar 

  38. Hajirezaee S, Rafieepour A, Khanjani MH (2023) Ameliorating effects of gingko, Ginkgo biloba extract on waterborne toxicity of Titanium dioxide nanoparticles (TiO2) in the Rainbow trout, Oncorhynchus mykiss: growth, histology, oxidative stress, immunity, antioxidant defense and liver function. Aquac Rep 31:101635

    Article  Google Scholar 

  39. Hussain SM, Khalid A, Shahzad MM, Rasul A, Akram AM, Ahmad N, Khalid F (2019) Effect of dietary supplementation of Se nanoparticles on growth performance and nutrient digestibility of common carp (Cyprinus carpio Linnaeus, 1758) fingerlings fed sunflower meal based diet. Indian J Fish 66(3):55–61

    Article  Google Scholar 

  40. Izquierdo MS, Ghrab W, Roo J, Hamre K, Hernández‐Cruz CM, Bernardini G, … Saleh R (2017) Organic, inorganic and nanoparticles of Se, Zn and Mn in early weaning diets for gilthead seabream (Sparus aurata; Linnaeus, 1758). Aquac Res 48(6):2852–2867

  41. Jahanbakhshi A, Pourmozaffar S, Adeshina I, Mahmoudi R, Erfanifar E, Ajdari A (2021) Se nanoparticle and selenomethionine as feed additives: effects on growth performance, hepatic enzymes’ activity, mucosal immune parameters, liver histology, and appetite-related gene transcript in goldfish (Carassius auratus). Fish Physiol Biochem 47:639–652

    Article  CAS  PubMed  Google Scholar 

  42. Jamima J, Veeramani P, Kanagaraju P, Kumanan K (2021) Synthesis and characterization of Se nano particles by high energyball milling (HEBM) techique. Indian J Vet Anim Sci Res 49(4):45–51

    Google Scholar 

  43. **gyuan H, Yan L, Wen**g P, Wenqiang J, Bo L, Linghong M, … ** G (2020) Dietary Se enhances the growth and anti-oxidant capacity of juvenile blunt snout bream (Megalobrama amblycephala). Fish Shellf Immunol 101:115–125

  44. Jyothi M, Ramaiah BJ, Maliyekkal SM (2020) Occurrence, contamination, speciation and analysis of Se in the environment: measurement, analysis and remediation of environmental pollutants. Springer, New York, pp 245–270

    Google Scholar 

  45. Kazemi M, Akbari A, Soleimanpour S, Feizi N, Darroudi M (2019) The role of green reducing agents in gelatin-based synthesis of colloidal Se nanoparticles and investigation of their antimycobacterial and photocatalytic properties. J Clust Sci 30(3)

  46. Khalid A, Hussain SM, Khalid F, Shahzad MM, Sharif A, Bashir F, Asrar M (2023) Effects of dietary se nanoparticles supplementation on growth performance, hematology and body composition of Oreochromis Niloticus fingerlings. Japs: J Anim Plant Sci 33(1)

  47. Khalil HS, Maulu S, Verdegem M, Abdel-Tawwab M (2023) Embracing nanotechnology for selenium application in aquafeeds. Rev Aquac 15(1):112–129

    Article  Google Scholar 

  48. Khan KU, Zuberi A, Fernandes JBK, Ullah I, Sarwar H (2017) An overview of the ongoing insights in Se research and its role in fish nutrition and fish health. Fish Physiol Biochem 43:1689–1705

    Article  CAS  PubMed  Google Scholar 

  49. Khan KU, Zuberi A, Nazir S, Fernandes JBK, Jamil Z, Sarwar H (2016) Effects of dietary Se nanoparticles on physiological andbiochemical aspects of juvenile Tor putitora. Turkish Journal of Zoology 40(5):704–712

    Article  CAS  Google Scholar 

  50. Kieliszek M, Bano I, Zare H (2022) A comprehensive review on Se and its effects on human health and distribution in middle eastern countries. Biol Trace Elem Res 200(3):971–987

    Article  CAS  PubMed  Google Scholar 

  51. Kohshahi AJ, Sourinejad I, Sarkheil M, Johari SA (2019) Dietary cosupplementation with curcumin and different Se sources (nanoparticulate, organic, and inorganic Se): influence on growth performance, body composition, immune responses, and glutathione peroxidase activity of rainbow trout (Oncorhynchus mykiss). Fish Physiol Biochem 45:793–804

    Article  CAS  PubMed  Google Scholar 

  52. Korde P, Ghotekar SK, Pagar T, Pansambal S, Mane D (2020) Plant extract assisted eco-benevolent synthesis of Se nanoparticles-a review on plant parts involved, characterization and their recent applications. Chem Rev 2:157–168. https://doi.org/10.33945/SAMI/JCR.2020.3.3

    Article  CAS  Google Scholar 

  53. Kumar N, Gupta SK, Chandan NK, Bhushan S, Singh DK, Kumar P, … Singh NP (2020) Mitigation potential of Se nanoparticles and riboflavin against arsenic and elevated temperature stress in Pangasianodon hypophthalmus. Sci Rep 10(1):17883

  54. Kumar N, Krishnani KK, Gupta SK, Singh NP (2017) Se nanoparticles enhanced thermal tolerance and maintain cellular stress protection of Pangasius hypophthalmus reared under lead and high temperature. Respir Physiol Neurobiol 246:107–116

    Article  CAS  PubMed  Google Scholar 

  55. Lakshme PS, Jeevitha M, Rajeshkumar S (2020) Evaluation of antioxidant and cytotoxic effect of Se nanoparticles synthesised using Capparis decidua. J Pharm Res Int 32(19):60–66

    Article  Google Scholar 

  56. Lal J, Tameshwar S, Kashyap N (2022) Nanotechnology: an innovative approach for sustainable fisheries and aquaculture. Vigyan Varta 3(1):12–14

    Google Scholar 

  57. Le KT, Fotedar R, Partridge G (2014) Se and vitamin E interaction in the nutrition of yellowtail kingfish (Seriola lalandi): physiological and immune responses. Aquac Nutr 20(3):303–313

    Article  CAS  Google Scholar 

  58. Li Z, Xu Y, Li F, Ren H (2022) Effects of Se adaptation on intestinal morphology, antioxidant-relate genes expression and intestinal microflora of grass carp (Ctenopharyngodon idella). Israeli J Aquac-Bamidgeh 74

  59. Lin F, Zhang H, Yu J, Yu C, Chen C, Sun Z, … Wen X (2021) Effects of dietary Se on growth performance, antioxidative status and tissue Se deposition of juvenile Chu's croaker (Nibea coibor). Aquaculture 536:736439

  60. Lin L, Wang J, Liao MA, Hu R, Deng Q, Wang Z, Tang Y (2022) Artemisia argyi water extract promotes Se uptake of peach seedlings. Front Plant Sci 13:1014454

    Article  PubMed  PubMed Central  Google Scholar 

  61. Liu G, Yu H, Wang C, Li P, Liu S, Zhang X, ... Ji H (2021) Nano-Se supplements in high-fat diets relieve hepatopancreas injury and improve survival of grass carp Ctenopharyngodon Idella by reducing lipid deposition. Aquaculture 538:736580.

  62. Liu S, Yu H, Li P, Wang C, Liu G, Zhang X, … Ji, H. (2022). Dietary nano-Se alleviated intestinal damage of juvenile grass carp (Ctenopharyngodon idella) induced by high-fat diet: insight from intestinal morphology, tight junction, inflammation, anti-oxidization and intestinal microbiota. Animal Nutrition, 8(1), 235–248

  63. Longbaf Dezfouli M, Ghaedtaheri A, Keyvanshokooh S, Salati AP, Mousavi SM, Pasha-Zanoosi H (2019) Combined or individual effects of dietary magnesium and Se nanoparticles on growth performance, immunity, blood biochemistry and antioxidant status of Asian seabass (Lates calcarifer) reared in freshwater. Aquac Nutr 25(6):1422–1430

    Article  CAS  Google Scholar 

  64. Luo, L., Wang, Y., Zhang, S., Guo, L., Jia, G., Lin, W., ... & Sun, T. (2021). Preparation and characterization of Se-rich polysaccharide from Phellinusigniarius and its effects on wound healing. Carbohydrate Polymers, 264, 117982.

  65. Magouz FI, Mahmoud SA, El-Morsy RA, Paray BA, Soliman AA, Zaineldin AI, Dawood MA (2021) Dietary menthol essential oil enhanced the growth performance, digestive enzyme activity, immune-related genes, and resistance against acute ammonia exposure in Nile tilapia (Oreochromis niloticus). Aquaculture 530:735944

    Article  CAS  Google Scholar 

  66. Malik, S., Muhammad, K., Waheed, Y., 2023. Nanotechnology: a revolution in modern industry. Molecules 28. https://doi.org/10.3390/molecules28020661

  67. Mansour ATE, Goda AA, Omar EA, Khalil HS, Esteban MÁ (2017) Dietary supplementation of organic Se improves growth, survival, antioxidant and immune status of meagre, Argyrosomus regius, juveniles. Fish Shellfish Immunol 68:516–524

    Article  CAS  PubMed  Google Scholar 

  68. Mechlaoui, M., Dominguez, D., Robaina, L., Geraert, P. A., Kaushik, S., Saleh, R., ... & Izquierdo, M. (2019). Effects of different dietary Se sources on growth performance, liver and muscle composition, antioxidant status, stress response and expression of related genes in gilthead seabream (Sparus aurata). Aquaculture, 507, 251–259.

  69. Moges FD, Patel P, Parashar SKS, Das B (2020) Mechanistic insights into diverse nano-based strategies for aquaculture enhancement: a holistic review. Aquaculture 519:734770

    Article  Google Scholar 

  70. Naderi M, Keyvanshokooh S, Ghaedi A, Salati AP (2019) Interactive effects of dietary Nano Se and vitamin E on growth, haematology, innate immune responses, antioxidant status and muscle composition of rainbow trout under high rearing density. Aquac Nutr 25(5):1156–1168

    Article  CAS  Google Scholar 

  71. Nazer A, Harsij M, Shirangi SA, Adineh H (2020) Protective effect of dietary vitamin E and nano-Se supplementations on growth performance and hematological parameters of rainbow trout (Oncorhynchus mykiss) exposed to sublethal level of ammonia. Aquatics Physiology and Biotechnology 8(1):95–122

    Google Scholar 

  72. Nugroho RA, Fotedar R (2013) Dietary organic Se improves growth, survival and resistance to Vibrio mimicus in cultured marron, Cherax cainii (Austin, 2002). Fish Shellfish Immunol 35(1):79–85

    Article  CAS  PubMed  Google Scholar 

  73. Pan C, Zhao Y, Liao SF. Chen F, Qin S, Wu X, … Huang K (2011) Effect of Se-enriched probiotics on laying performance, egg quality, egg Se content, and egg glutathione peroxidase activity. J Agric Food Chem 59(21):11424–11431

  74. Paul DR, Talukdar D, Deori S (2022) The impact of Se nanoparticles on sperm quality. Emerg Life Sci Res 8:156–161

    CAS  Google Scholar 

  75. Pavithra K, Darthiqueen P, Karthik M, Ramasubramanian V (2021) Effect of dietary Se nanoparticles (SeNPs) on growth, hematology, protein profile, immune response, and E coli. bacteria challenged on Rohu, Labeo rohita. Int J Multidiscip Educ Res 10(4):58–65

    Google Scholar 

  76. Penglase S, Nordgreen A, Van der Meeren T, Olsvik PA, Sæle Ø, Sweetman JW, … Hamre K (2010) Increasing the level of Se in rotifers (Brachionus plicatilis ‘Cayman’) enhances the mRNA expression and activity of glutathione peroxidase in cod (Gadus morhua L.) larvae. Aquaculture 306(1–4):259–269

  77. Pettine M, McDonald TJ, Sohn M, Anquandah GAK, Zboril R, Sharma VK (2015) A critical review of Se analysis in natural water samples. Trends Environ Anal 5:1–7. https://doi.org/10.1016/j.teac.2015.01.001

    Article  CAS  Google Scholar 

  78. Poljsak B, Milisav I (2012) The neglected significance of “antioxidative stress.” Oxid Med Cell Longev 2012

  79. Prabhu PAJ, Holen E, Espe M, Silva MS, Holme MH, Hamre K, ... Waagbø R (2020) Dietary Se required to achieve body homeostasis and attenuate pro-inflammatory responses in Atlantic salmon post-smolt exceeds the present EU legal limit. Aquaculture 526:735413

  80. Rafieepour A, Hajirezaee S, Rahimi R (2019) Dietary oregano extract (Origanum vulgare L.) enhances the antioxidant defence in rainbow trout, Oncorhynchus mykiss against toxicity induced by organophosphorus pesticide, diazinon. Toxin Rev

  81. Saleh R, Betancor MB, Roo J, Benítez-Dorta V, Zamorano MJ, Bell JG, Izquierdo M (2015) Effect of krill phospholipids versus soybean lecithin in microdiets for gilthead seabream (Sparus aurata) larvae on molecular markers of antioxidative metabolism and bone development. Aquac Nutr 21(4):474–488

    Article  CAS  Google Scholar 

  82. Seyedi J, Kalbassi MR, Esmaeilbeigi M, Tayemeh MB, Moghadam JA (2021) Toxicity and deleterious impacts of Se nanoparticles at supranutritional and imbalance levels on male goldfish (Carassius auratus) sperm. J Trace Elem Med Biol 66:126758

    Article  CAS  PubMed  Google Scholar 

  83. Siddik MA, Vatsos IN, Rahman MA, Pham HD (2022) Se-enriched spirulina (SeE-SP) enhance antioxidant response, immunity, and disease resistance in juvenile Asian seabass, lates calcarifer. Antioxidants 11(8):1572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Sumana SL, Chen H, Shui Y, Zhang C, Yu F, Zhu J, Su S (2023) Effect of dietary selenium on the growth and immune systems of fish. Animals 13:1–20

    Article  Google Scholar 

  85. Sun J, Liu Z, Quan J, Li L, Zhao G, Lu J (2022) Protective effects of different concentrations of Se nanoparticles on rainbow trout (Oncorhynchus mykiss) primary hepatocytes under heat stress. Ecotoxicol Environ Saf 230:113121

    Article  CAS  PubMed  Google Scholar 

  86. Swain P, Das R, Das A, Padhi SK, Das KC, Mishra SS (2019) Effects of dietary zinc oxide and Se nanoparticles on growth performance, immune responses and enzyme activity in rohu, Labeo rohita (Hamilton). Aquac Nutr 25(2):486–494

    Article  CAS  Google Scholar 

  87. Takahashi LS, Biller-Takahashi JD, Mansano CFM, Urbinati EC, Gimbo RY, Saita MV (2017) Long-term organic Se supplementation overcomes the trade-off between immune and antioxidant systems in pacu (Piaractus mesopotamicus). Fish Shellfish Immunol 60:311–317

    Article  CAS  PubMed  Google Scholar 

  88. Technavio (2019) Global food nanotechnology market 2019–2023: growing applications in nutraceuticals to boost the market. Toronto, Canada: Technavio

  89. Tseng Y, Dominguez D, Bravo J, Acosta F, Robaina L, Geraert PA, … Izquierdo M (2021) Organic Se (OH-MetSe) effect on whole body fatty acids and mx gene expression against viral infection in gilthead seabream (sparus aurata) juveniles. Animals 11(10):2877

  90. Vijayaram S, Razafindralambo H, Sun YZ, Vasantharaj S, Ghafarifarsani H, Hoseinifar SH, Raeeszadeh M (2023a) Applications of green synthesized metal nanoparticles—a review. Biol Trace Elem Res 1–27

  91. Wang L, Li X, Lu K, Song K, Wang G, Zhang C (2021) Dietary hydroxyl methionine Se supplementation enhances growth performance, antioxidant ability and nitrite tolerance of Litopenaeus vannamei. Aquaculture 537:736513

    Article  CAS  Google Scholar 

  92. Wang L, Sagada G, Wang R, Li P, Xu B, Zhang C, Qiao J, Yan Y (2022) Different forms of selenium supplementation in fish feed: the bioavailability, nutritional functions, and potential toxicity. Aquaculture 549:737819

    Article  CAS  Google Scholar 

  93. Wang L, **ao JX, Hua Y, **ang XW, Zhou YF, Ye L, Shao QJ (2019a) Effects of dietary Se polysaccharide on growth performance, oxidative stress and tissue Se accumulation of juvenile black sea bream, Acanthopagrus schlegelii. Aquaculture 503:389–395

    Article  CAS  Google Scholar 

  94. Wang N, Tan HY, Li S, Xu Y, Guo W, Feng Y (2017) Supplementation of micronutrient Se in metabolic diseases: its role as an antioxidant. Oxidative medicine and cellular longevity

  95. Wang X, Shen Z, Wang C, Li E, Qin JG, Chen L (2019b) Dietary supplementation of Se yeast enhances the antioxidant capacity and immune response of juvenile Eriocheir Sinensis under nitrite stress. Fish Shellfish Immunol 87:22–31

    Article  CAS  PubMed  Google Scholar 

  96. Wangkahart E, Bruneel B, Chantiratikul A, de Jong M, Pakdeenarong N, Subramani PA (2022) Optimum dietary sources and levels of Se improve growth, antioxidant status, and disease resistance: re-evaluation in a farmed fish species, Nile tilapia (Oreochromis niloticus). Fish Shellfish Immunol 121:172–182

    Article  CAS  PubMed  Google Scholar 

  97. Wischhusen P, Parailloux M, Geraert PA, Briens M, Bueno M, Mounicou S, … Fontagné-Dicharry S (2019) Effect of dietary Se in rainbow trout (Oncorhynchus mykiss) broodstock on antioxidant status, its parental transfer and oxidative status in the progeny. Aquaculture 507:126–138

  98. Wu Y, Ma H, Fu D, Zhu H, Wang X, Ren X (2022) Growth, nutrient retention, waste output, and antioxidant capacity of juvenile triangular bream (Megalobrama terminalis) in response to dietary Se yeast concentration. Aquac Nutr

  99. **a IF, Cheung JS, Wu M, Wong KS, Kong HK, Zheng XT, Wong KH, Kwok KW (2019) Dietary chitosan-Se nanoparticle (CTS-SeNP) enhance immunity and disease resistance in zebrafish. Fish Shellfish Immunol 87:449–459

    Article  CAS  PubMed  Google Scholar 

  100. Xu Z, Hu J, Zhang Y, Bai L (2023) Evaluation of largemouth bass (Micropterus salmoide) fed Se yeast diets: growth, histopathology, antioxidant ability, and apoptosis. Aquaculture Reports 29:101505

    Article  Google Scholar 

  101. Yahyavi M, Salarzadeh A (2021) The effects of different concentrations of Se and zinc nanoparticles on growth performance, survival and chemical composition of whiteleg shrimp (Litopenaeus vannamei). ISFJ 29(6):43–51

    Google Scholar 

  102. Ying H, Zhang Y (2019) Systems biology of Se and complex disease. Biol Trace Elem Res 192(1):38–50

    Article  CAS  PubMed  Google Scholar 

  103. Yu H, Zhang C, Zhang X, Wang C, Li P, Liu G, … Ji H (2020) Dietary nano‐Se enhances antioxidant capacity and hypoxia tolerance of grass carp Ctenopharyngodon idella fed with high‐fat diet. Aquac Nutr 26(2):545–557.

  104. Zahmatkesh A, Karimzadeh K, Faridnia M (2020) Effect of dietary Se nanoparticles and chitosan oligosaccharide on biochemical parameters of Caspian roach (Rutilus caspicus) under malathion stress. Caspian J Environ Sci 18(1):59–71

    Google Scholar 

  105. Zhang M, Li M, Li X, Qian Y, Wang R, Hong M (2020) The protective effects of Se on chronic ammonia toxicity in yellow catfish (Pelteobagrus fulvidraco). Fish Shellfish Immunol 107:137–145

    Article  CAS  PubMed  Google Scholar 

  106. Zhao D, Jiang J, Liu L, Wang S, Ge J (2021) Characterization of exopolysaccharides produced by Weissella confusa XG-3 and their potential biotechnological applications. Int J Biol Macromol 178(1):306–315

    Article  CAS  PubMed  Google Scholar 

  107. Zhao G, Hu J, Gao M, Zhu Y, Hong Y (2022) Excessive selenium affects neural development and locomotor behavior of zebrafish embryos. Ecotoxicol Environ Saf 238:113611

    Article  CAS  PubMed  Google Scholar 

  108. Zheng L, Jiang WD, Feng L, Wu P, Tang L, Kuang SY, … Liu Y (2018) Se deficiency impaired structural integrity of the head kidney, spleen and skin in young grass carp (Ctenopharyngodon idella). Fish Shellf Immunol 82:408–420

  109. Zhou N, Long H, Wang C, Yu L, Zhao M, Liu X (2020) Research progress on the biological activities of Se polysaccharides. Food Funct 11(6):4834–4852

    Article  CAS  PubMed  Google Scholar 

  110. Zhu C, Peng G, Li J, Deng Y, ** T, Liu Q, … Dong W (2023) Characterization of Se nanoparticles extracted from Bacillus subtilis and its antibacterial effects in Onychostoma macrolepis: insight into ferroptosis. Aquac Fish

Download references

Acknowledgements

This research received no external funding.

Author information

Authors and Affiliations

Authors

Contributions

Srirengaraj Vijayaram: Conceptualization; writing–original draft; literature search; table preparation. Writing–review and editing; Formal analysis; Data curation. Hamed Ghafarifarsani: Writing–review and editing; manuscript outline. Srikanth Vuppala: Writing–review and editing; validation; Formal analysis; Diagram preparation. Shiva Nedaei: Writing–review and editing. Karthikeyan Mahendran: Writing–review and editing. Ramanathan Murugappan: Writing–review and editing; validation. Chi-Chung Chou: Writing–review and editing; manuscript outline; supervision. Formal analysis; Data curation; Validation. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Hamed Ghafarifarsani or Chi-Chung Chou.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vijayaram, S., Ghafarifarsani, H., Vuppala, S. et al. Selenium Nanoparticles: Revolutionizing Nutrient Enhancement in Aquaculture – A Review. Biol Trace Elem Res (2024). https://doi.org/10.1007/s12011-024-04172-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12011-024-04172-x

Keywords

Navigation