Log in

Dietary Dihydromyricetin Zinc Chelate Supplementation Improves the Intestinal Health of Magang Geese

  • Research
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

To fulfill the nutritional requirements of poultry, effective Zn supplementation is required due to Zn deficiency in basic feed. In this study, we investigated the effects of DMY-Zn (dihydromyricetin zinc chelate) on the growth performance, morphology, and biochemical indices; the expression of intestinal barrier-related genes; the intestinal microflora; and the cecum metabolome of Magang geese. A total of 300 14-day-old Magang geese (equal number of males and females) with an average body weight of 0.82 ± 0.08 kg were randomly divided into five groups and fed a basal diet; these groups were given DMY-Zn (low, medium, or high level of DMY-Zn with 30, 55, or 80 mg/kg Zn added to the basal diet) or ZnSO4 (80 mg/kg Zn added) for 4 weeks. Our results revealed that DMY-Zn significantly impacts growth and biochemical indices and plays a significant role in regulating the intestinal barrier and microflora. DMY-Zn is involved in the upregulation of intestinal barrier gene (ZO1 and MUC2) expression, as well as upregulated Zn-related gene expression (ZIP5). On the other hand, a low concentration of DMY-Zn increased the ɑ diversity index and the abundance of Lactobacillus and Faecalibacterium. Additionally, a cecal metabolomics study showed that the main metabolic pathways affected by DMY-Zn were the pentose phosphate pathway, the biosynthesis of different alkaloids, and the metabolism of sphingolipids. In conclusion, DMY-Zn can reduce feed intake, increase the expression of intestinal barrier-related genes, help maintain the intestinal microflora balance, and increase the abundance of beneficial bacteria in the intestine to improve intestinal immunity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Abd El-Hack ME, Alagawany M, Arif M et al (2017) Organic or inorganic zinc in poultry nutrition: a review. Worlds Poult Sci J 73(4):904–915. https://doi.org/10.1017/S0043933917000769

    Article  Google Scholar 

  2. Maret W (2017) Zinc in cellular regulation: the nature and significance of “zinc signals.” Int J Mol Sci 18(11):2285. https://doi.org/10.3390/ijms18112285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Subramanian Vignesh K, Deepe GS (2016) Immunological orchestration of zinc homeostasis: the battle between host mechanisms and pathogen defenses. Arch Biochem Biophys 611:66–78. https://doi.org/10.1016/j.abb.2016.02.020

    Article  CAS  PubMed  Google Scholar 

  4. Cheng J, Kolba N, Tako E (2023) The effect of dietary zinc and zinc physiological status on the composition of the gut microbiome in vivo. Crit Rev Food Sci Nutr 1–20. https://doi.org/10.1080/10408398.2023.2169857

  5. Zhang Y-H, Chang Y-Q, Yang T et al (2020) The hepatoprotective effects of zinc glycine on liver injury in meat duck through alleviating hepatic lipid deposition and inflammation. Biol Trace Elem Res 195:569–578

    Article  CAS  PubMed  Google Scholar 

  6. Dietrich N, Schneider DL, Kornfeld K (2017) A pathway for low zinc homeostasis that is conserved in animals and acts in parallel to the pathway for high zinc homeostasis. Nucleic Acids Res 45(20):11658–11672. https://doi.org/10.1093/nar/gkx762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Baltaci AK, Yuce K, Mogulkoc R (2018) Zinc metabolism and metallothioneins. Biol Trace Elem Res 1:22–31. https://doi.org/10.1007/s12011-017-1119-7

    Article  CAS  Google Scholar 

  8. Ziegler TR, Evans ME, Fernández-Estívariz C et al (2003) Trophic and cytoprotective nutrition for intestinal adaptation, mucosal repair, and barrier function. Annu Rev Nutr 23(1):229–261. https://doi.org/10.1146/annurev.nutr.23.011702.073036

    Article  CAS  PubMed  Google Scholar 

  9. Wan Y, Zhang B-K (2022) The impact of zinc and zinc homeostasis on the intestinal mucosal barrier and intestinal diseases. Biomolecules 12(7):900. https://doi.org/10.3390/biom12070900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kamran Azad S, Shariatmadari F, KarimiTorshizi MA et al (2018) Effect of zinc concentration and source on performance, tissue mineral status, activity of superoxide dismutase enzyme and lipid peroxidation of meat in broiler chickens. Anim Prod Sci 58(10):1837–1846. https://doi.org/10.1071/AN15758

    Article  CAS  Google Scholar 

  11. Chang Y-Q, Zhang Z-Y, Wu B et al (2021) Evaluating zinc glycine chelate in Cherry Valley ducks: responses of growth performance, nutrient utilization, serum parameters, antioxidant status, meat quality and zinc accumulation. Anim Feed Sci Technol 275:114875. https://doi.org/10.1016/j.anifeedsci.2021.114875

    Article  CAS  Google Scholar 

  12. Shao Y-X, Wolf PG, Guo S-S et al (2017) Zinc enhances intestinal epithelial barrier function through the PI3K/AKT/mTOR signaling pathway in Caco-2 cells. J Nutr Biochem 43:18–26. https://doi.org/10.1016/j.jnutbio.2017.01.013

    Article  CAS  PubMed  Google Scholar 

  13. Liu Y, Yu X-J, Zhao J-X et al (2020) The role of MUC2 mucin in intestinal homeostasis and the impact of dietary components on MUC2 expression. Int J Biol Macromol 164:884–891. https://doi.org/10.1016/j.ijbiomac.2020.07.191

    Article  CAS  PubMed  Google Scholar 

  14. Zhang S-Q, Yu X-F, Zhang H-B et al (2018) Comparison of the oral absorption, distribution, excretion, and bioavailability of zinc sulfate, zinc gluconate, and zinc-enriched yeast in rats. Mol Nutr Food Res 62(7):1700981. https://doi.org/10.1002/mnfr.201700981

    Article  CAS  Google Scholar 

  15. Tullo E, Finzi A, Guarino M (2019) Review: Environmental impact of livestock farming and precision livestock farming as a mitigation strategy. Sci Total Environ 650:2751–2760. https://doi.org/10.1016/j.scitotenv.2018.10.018

    Article  CAS  PubMed  Google Scholar 

  16. Philippi H, Sommerfeld V, Windisch W et al (2023) Interactions of zinc with phytate and phytase in the digestive tract of poultry and pigs: a review. J Sci Food Agric 103:7333. https://doi.org/10.1002/jsfa.12879

    Article  CAS  PubMed  Google Scholar 

  17. Yu Y, Lu L, Li S-F et al (2017) Organic zinc absorption by the intestine of broilers in vivo. Br J Nutr 117(8):1086–1094. https://doi.org/10.1017/S0007114517001040

    Article  CAS  PubMed  Google Scholar 

  18. Chen J-N, Wang X-T, **a T et al (2021) Molecular mechanisms and therapeutic implications of dihydromyricetin in liver disease. Biomed Pharmacother 142:111927. https://doi.org/10.1016/j.biopha.2021.111927

    Article  CAS  PubMed  Google Scholar 

  19. Guitard R, Paul J-F, Nardello-Rataj V et al (2016) Myricetin, rosmarinic and carnosic acids as superior natural antioxidant alternatives to α-tocopherol for the preservation of omega-3 oils. Food Chem 213:284–295. https://doi.org/10.1016/j.foodchem.2016.06.038

    Article  CAS  PubMed  Google Scholar 

  20. Lu C-J, He Y-F, Yuan W-Z et al (2017) Dihydromyricetin-mediated inhibition of the Notch1 pathway induces apoptosis in QGY7701 and HepG2 hepatoma cells. World J Gastroenterol 23(34):6242–6251. https://doi.org/10.3748/wjg.v23.i34.6242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sun Y, Liu S, Yang S, Chen C, Yang Y, Lin M, Liu C, Wang W, Zhou X, Ai Q, Wang W, Chen N (2022) Mechanism of dihydromyricetin on inflammatory diseases. Front Pharmacol 12:794563. https://doi.org/10.3389/fphar.2021.794563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Luo F, Zeng D-D, Wang W-X et al (2022) Bio-conditioning poly-dihydromyricetin zinc nanoparticles synthesis for advanced catalytic degradation and microbial inhibition. J Nanostructure Chem 12(5):903–917. https://doi.org/10.1007/s40097-021-00443-4

    Article  CAS  Google Scholar 

  23. Wang R-K, Ren Y-L, Javad HU et al (2022) Effect of different dietary zinc sources on growth, element deposition, antioxidation, lipid metabolism, and related gene expression in hybrid grouper (♀ Epinephelus fuscoguttatus × ♂ E. lanceolatus). Aquac Nutr 2022:8371440. https://doi.org/10.1155/2022/8371440

    Article  CAS  Google Scholar 

  24. Yang Y-T, He W-Q, Huang L-T et al (2022) Effects of different zinc sources on performance, serum biochemical indexes and microelement deposition of laying hens. Chin J Anim Nutr 34(4):2393–2402. https://doi.org/10.3969/j.issn.1006-267.x.2022.04.034

    Article  CAS  Google Scholar 

  25. Lin Z-P, Lin M, Wang S-Q (2011) Conservation and utilization status of goose breed resources in Guangdong province. Waterfowl world 04:7–10

    CAS  Google Scholar 

  26. Wu Z-B, Lin T, Wang X, Liang Z-H, Ou Y-Q, Yang D-D, Fu J-D, Fu J, Huang Y-H, Liu C-P (2022) Effects of tea polyphenols on growth performance, slaughter performance, muscle quality and antioxidant capacity of Magang geese. Nutrition and Feedstuffs 58:231–235

    Google Scholar 

  27. Chang Y, Mei J, Yang T, Zhang Z, Liu G, Zhao H, Chen X, Tian G, Cai J, Wu B, Wu F, Jia G (2022) Effect of dietary zinc methionine supplementation on growth performance, immune function and intestinal health of cherry valley ducks challenged with avian pathogenic Escherichia coli. Front Microbiol 13. https://doi.org/10.3389/fmicb.2022.849067

  28. ** S-H, Yang L, Fan X-F et al (2019) Effect of divergence in residual feed intake on expression of lipid metabolism-related genes in the liver of meat-type ducks1. J Anim Sci 97(9):3947–3957. https://doi.org/10.1093/jas/skz241

    Article  PubMed  PubMed Central  Google Scholar 

  29. Wang B-W, Chen M-L, Wang B-H et al (2015) Effects of dietary zinc level on growth performance, immune and antioxidant capacity and metallothionein-I mRNA expression of geese aged from 1 to 4 weeks. Chin J Anim Nutr 27(4):1076–1085. https://doi.org/10.3969/j.issn.1006-267.2015.04.011

    Article  Google Scholar 

  30. Wang B-W, Chen M-L, Wang B-H et al (2015) Effects of dietary zinc on immunity, antioxidant capacity and MT-I mRNA gene expression level and their factor correlationanalysis of 5–15 weeks old goose. Scientia Agricultura Sinica 48(9):1825–1835. https://doi.org/10.3864/j.issn.0578-1752.2015.09.16

    Article  CAS  Google Scholar 

  31. Emmert JL, Baker DH (1995) Zinc stores in chickens delay the onset of zinc deficiency symptoms. Poult Sci 74(6):1011–1021. https://doi.org/10.3382/ps.0741011

    Article  CAS  PubMed  Google Scholar 

  32. Mwangi S, Timmons J, Ao T et al (2017) Effect of zinc imprinting and replacing inorganic zinc with organic zinc on early performance of broiler chicks. Poult Sci 96(4):861–868. https://doi.org/10.3382/ps/pew312

    Article  CAS  PubMed  Google Scholar 

  33. Hu X-Y, Sheikhahmadi A, Li X-L et al (2016) Effect of zinc on appetite regulatory peptides in the hypothalamus of Salmonella-challenged broiler chickens. Biol Trace Elem Res 172(1):228–233. https://doi.org/10.1007/s12011-015-0582-2

    Article  CAS  PubMed  Google Scholar 

  34. Zhang Z-L, Zhang L-J, Zhang Q-P et al (2021) HO-1/CO maintains intestinal barrier integrity through NF-κB/MLCK pathway in intestinal HO-1-/- mice. Oxid Med Cell Longev 2021:6620873. https://doi.org/10.1155/2021/6620873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mahmood A, FitzGerald AJ, Marchbank T et al (2007) Zinc carnosine, a health food supplement that stabilises small bowel integrity and stimulates gut repair processes. Gut 56(2):168. https://doi.org/10.1136/gut.2006.099929

    Article  CAS  PubMed  Google Scholar 

  36. Che Q, Luo T, Shi J, He Y, Xu D (2022) Mechanisms by which traditional Chinese medicines influence the intestinal flora and intestinal barrier. Front Cell Infect Microbiol 12:863779. https://doi.org/10.3389/fcimb.2022.863779

  37. Enez B (2021) Purification and characterization of thermostable α-amylase from soil bacterium Bacillus sp. Protein Pept Lett 28(12):1372–1378. https://doi.org/10.2174/0929866528666211027113113

    Article  CAS  PubMed  Google Scholar 

  38. Gao J-W, Wang L-F, Yang G-Q et al (2010) Research progress on the mechanism of zinc absorption and metabolism. J Anhui Agri Sci 38(1):33-34,67

    CAS  Google Scholar 

  39. Levkut M, Husáková E, Bobíková K et al (2017) Inorganic or organic zinc and MUC-2, IgA, IL-17, TGF-β4 gene expression and sIgA secretion in broiler chickens. Food Agric Immunol 28(5):801–811. https://doi.org/10.1080/09540105.2017.1313202

    Article  CAS  Google Scholar 

  40. Inamine T, Schnabl B (2018) Immunoglobulin A and liver diseases. J Gastroenterol 53(6):691–700. https://doi.org/10.1007/s00535-017-1400-8

    Article  CAS  PubMed  Google Scholar 

  41. Jarosz Ł, Marek A, Grądzki Z et al (2017) Effect of feed supplementation with zinc glycine chelate and zinc sulfate on cytokine and immunoglobulin gene expression profiles in chicken intestinal tissue. Poult Sci 96(12):4224–4235. https://doi.org/10.3382/ps/pex253

    Article  CAS  PubMed  Google Scholar 

  42. Hojyo S, Fukada T (2016) Roles of zinc signaling in the immune system. J Immunol Res 2016:6762343. https://doi.org/10.1155/2016/6762343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yin S-H, Duan M-P, Fang B et al (2022) Zinc homeostasis and regulation: zinc transmembrane transport through transporters. Crit Rev Food Sci Nutr 63:1–11. https://doi.org/10.1080/10408398.2022.2048292

    Article  Google Scholar 

  44. Andrews Glen K (2008) Regulation and function of Zip4, the acrodermatitis enteropathica gene. Biochem Soc Trans 36(6):1242–1246. https://doi.org/10.1042/BST0361242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lv M-Y, Fu X-F, Hu L-S et al (2016) The expression of zinc transporters changed in the intestine of weaned pigs exposed to zinc chitosan chelate. Biol Trace Elem Res 174:328–334. https://doi.org/10.1007/s12011-016-0732-1

    Article  CAS  PubMed  Google Scholar 

  46. Maares M, Keil C, Thomsen S, Günzel D, Wiesner B, Haase H (2018) Characterization of Caco-2 cells stably expressing the protein-based zinc probe eCalwy-5 as a model system for investigating intestinal zinc transport. J Trace Elem Med Biol 49:296–304. https://doi.org/10.1016/j.jtemb.2018.01.004

    Article  CAS  PubMed  Google Scholar 

  47. Hu Y, Huang Y-H, Wang C-L et al (2023) The organic zinc with moderate chelation strength enhances the expression of related transporters in the jejunum and ileum of broilers. Poult Sci 102(3):102477. https://doi.org/10.1016/j.psj.2023.102477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hu Y, Wang C-L, Wu W et al (2022) Organic zinc with moderate chelation strength enhances zinc absorption in the small intestine and expression of related transporters in the duodenum of broilers. Front Physiol 13. https://doi.org/10.3389/fphys.2022.952941

  49. Biagi G, Piva A, Moschini M et al (2006) Effect of gluconic acid on piglet growth performance, intestinal microflora, and intestinal wall morphology1. J Anim Sci 84(2):370–378. https://doi.org/10.2527/2006.842370x

    Article  CAS  PubMed  Google Scholar 

  50. Weaver BP, Dufner-Beattie J, Kambe T et al (2007) Novel zinc-responsive post-transcriptional mechanisms reciprocally regulate expression of the mouse Slc39a4 and Slc39a5 zinc transporters (Zip4 and Zip5). Biol Chem 388(12):1301–1312. https://doi.org/10.1515/BC.2007.149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yukina N, Taiho K (2019) Zinc transporter 1 (ZNT1) expression on the cell surface is elaborately controlled by cellular zinc levels. J Biol Chem 294(43):15686–15697. https://doi.org/10.1074/jbc.ra119.010227

    Article  CAS  Google Scholar 

  52. Tako E, Ferket PR, Uni Z (2005) Changes in chicken intestinal zinc exporter mRNA expression and small intestinal functionality following intra-amniotic zinc-methionine administration. J Nutr Biochem 16(6):339–346. https://doi.org/10.1016/j.jnutbio.2005.01.002

    Article  CAS  PubMed  Google Scholar 

  53. Han Q-Q, Guo Y-M, Zhang B-K et al (2020) Effects of dietary zinc on performance, zinc transporters expression, and immune response of aged laying hens. Biol Trace Elem Res 196(1):231–242. https://doi.org/10.1007/s12011-019-01916-y

    Article  CAS  PubMed  Google Scholar 

  54. Hardyman JEJ, Tyson J, Jackson KA et al (2016) Zinc sensing by metal-responsive transcription factor 1 (MTF1) controls metallothionein and ZnT1 expression to buffer the sensitivity of the transcriptome response to zinc†. Metallomics 8(3):337–343. https://doi.org/10.1039/c5mt00305a

    Article  CAS  PubMed  Google Scholar 

  55. Joshua SL, Rudravajhala R, Patrick JD et al (2000) The transcription factor MTF-1 mediates metal regulation of the mouse ZnT1 gene. J Biol Chem 275(44):34803–34809. https://doi.org/10.1074/jbc.m007339200

    Article  Google Scholar 

  56. Levkut M, Levkutová M, Grešáková Ľ et al (2023) Production of intestinal mucins, sIgA, and metallothionein after administration of zinc and infection of Ascaridia galli in chickens: preliminary data. Life 13(1):67. https://doi.org/10.3390/life13010067

    Article  CAS  Google Scholar 

  57. Palmiter RD (2004) Protection against zinc toxicity by metallothionein and zinc transporter 1. P N A S 101(14):4918–4923. https://doi.org/10.1073/pnas.0401022101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Nagamatsu S, Nishito Y, Yuasa H et al (2022) Sophisticated expression responses of ZNT1 and MT in response to changes in the expression of ZIPs. Sci Rep 12(1):7334. https://doi.org/10.1038/s41598-022-10925-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Jakobsson HE, Rodríguez-Piñeiro AM, Schütte A et al (2015) The composition of the gut microbiota shapes the colon mucus barrier. EMBO Rep 16(2):164–177. https://doi.org/10.15252/embr.201439263

    Article  CAS  PubMed  Google Scholar 

  60. Su S-Y, Tang Q-Q (2021) Altered intestinal microflora and barrier injury in severe acute pancreatitis can be changed by zinc. Int J Medical Sci 18(14):3050–3058. https://doi.org/10.7150/ijms.45980

    Article  CAS  Google Scholar 

  61. Laitinen K, Mokkala K (2019) Overall dietary quality relates to gut microbiota diversity and abundance. Int J Mol Sci 20(8):1835. https://doi.org/10.3390/ijms20081835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Mancabelli L, Ferrario C, Milani C et al (2016) Insights into the biodiversity of the gut microbiota of broiler chickens. Environ Microbiol 18(12):4727–4738. https://doi.org/10.1111/1462-2920.13363

    Article  CAS  PubMed  Google Scholar 

  63. Sun Y-G, Zhang S-S, Nie Q-X et al (2022) Gut firmicutes: relationship with dietary fiber and role in host homeostasis. Crit Rev Food Sci Nutr 63:1–16. https://doi.org/10.1080/10408398.2022.2098249

    Article  CAS  Google Scholar 

  64. Dowarah R, Verma AK, Agarwal N (2017) The use of lactobacillus as an alternative of antibiotic growth promoters in pigs: a review. Anim Nutr 3:1–6. https://doi.org/10.1016/j.aninu.2016.11.002

    Article  PubMed  Google Scholar 

  65. Djukovic A, Garzón MJ, Canlet C et al (2022) Lactobacillus supports Clostridiales to restrict gut colonization by multidrug-resistant Enterobacteriaceae. Nat Commun 13(1):5617. https://doi.org/10.1038/s41467-022-33313-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wang L-L, Wang Z-Y, Luo P-N et al (2023) Dietary zinc glycine supplementation improves tibia quality of meat ducks by modulating the intestinal barrier and bone resorption. Biol Trace Elem Res 201(2):888–903. https://doi.org/10.1007/s12011-022-03207-5

    Article  CAS  PubMed  Google Scholar 

  67. Lindenberg F, Krych L, Fielden J et al (2019) Expression of immune regulatory genes correlate with the abundance of specific Clostridiales and Verrucomicrobia species in the equine ileum and cecum. Sci Rep 9(1):12674. https://doi.org/10.1038/s41598-019-49081-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lopez-Siles M, Duncan SH, Garcia-Gil LJ et al (2017) Faecalibacterium prausnitzii: from microbiology to diagnostics and prognostics. The ISME Journal 11(4):841–852. https://doi.org/10.1038/ismej.2016.176

    Article  PubMed  PubMed Central  Google Scholar 

  69. Auger S, Kropp C, Borras-Nogues E et al (2022) Intraspecific diversity of microbial anti-inflammatory molecule (MAM) from Faecalibacterium prausnitzii. Int J Mol Sci 23(3):1705. https://doi.org/10.3390/ijms23031705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Mena-Vázquez N, Ruiz-Limón P, Moreno-Indias I et al (2023) Adiposity is associated with expansion of the genus Dialister in rheumatoid arthritis patients. Biomed Pharmacother 160:114388. https://doi.org/10.1016/j.biopha.2023.114388

    Article  CAS  PubMed  Google Scholar 

  71. Deng Y-D, Peng X-B, Zhao R-R et al (2019) The intestinal microbial community dissimilarity in hepatitis B virus-related liver cirrhosis patients with and without at alcohol consumption. Gut Pathogens 11(1):58. https://doi.org/10.1186/s13099-019-0337-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Göker M, Gronow S, Zeytun A et al (2011) Complete genome sequence of Odoribacter splanchnicus type strain (1651/6). Stand Genomic Sci 4(2):200. https://doi.org/10.4056/sigs.1714269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Hiippala K, Barreto G, Burrello C, Diaz-Basabe A, Suutarinen M, Kainulainen V, Bowers JR, Lemmer D, Engelthaler DM, Eklund KK, Facciotti F, Satokari R (2020) Novel Odoribacter splanchnicus strain and its outer membrane vesicles exert immunoregulatory effects in vitro. Front Microbiol 11. https://doi.org/10.3389/fmicb.2020.575455

  74. Huber-Ruano I, Calvo E, Mayneris-Perxachs J et al (2022) Orally administered Odoribacter laneus improves glucose control and inflammatory profile in obese mice by depleting circulating succinate. Microbiome 10(1):135. https://doi.org/10.1186/s40168-022-01306-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Walker A, Pfitzner B, Harir M et al (2017) Sulfonolipids as novel metabolite markers of Alistipes and Odoribacter affected by high-fat diets. Sci Rep 7(1):11047. https://doi.org/10.1038/s41598-017-10369-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Yang J-P, Li Y-N, Wen Z-Q et al (2021) Oscillospira - a candidate for the next-generation probiotics. Gut Microbes 13(1):1987783. https://doi.org/10.1080/19490976.2021.1987783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Magne F, Gotteland M, Gauthier L, Zazueta A, Pesoa S, Navarrete P, Balamurugan R (2020) The Firmicutes/Bacteroidetes ratio: A relevant marker of gut dysbiosis in obese patients? Nutrients 12(5):1474. https://doi.org/10.3390/nu12051474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ge T, Yang J, Zhou S, Wang Y, Li Y, Tong X (2020) The role of the pentose phosphate pathway in diabetes and cancer. Front Endocrinol 11:365. https://doi.org/10.3389/fendo.2020.00365

    Article  Google Scholar 

  79. Ząbek K, Szkopek D, Michalczuk M et al (2020) Dietary phytogenic combination with hops and a mixture of a free butyrate acidifier and gluconic acid maintaining the health status of the gut and performance in chickens. Animals 10(8):1335. https://doi.org/10.3390/ani10081335

    Article  PubMed  PubMed Central  Google Scholar 

  80. Michiels J, Truffin D, Majdeddin M et al (2023) Gluconic acid improves performance of newly weaned piglets associated with alterations in gut microbiome and fermentation. Porc Health Manag 9(1):10. https://doi.org/10.1186/s40813-023-00305-1

    Article  Google Scholar 

  81. Rey G, ValekunjaUtham K, Feeney Kevin A et al (2016) The pentose phosphate pathway regulates the circadian clock. Cell Metab 24(3):462–473. https://doi.org/10.1016/j.cmet.2016.07.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Li M, Gu M-M, Lang Y et al (2019) The vanillin derivative VND3207 protects intestine against radiation injury by modulating p53/NOXA signaling pathway and restoring the balance of gut microbiota. Free Radic Biol Med 145:223–236. https://doi.org/10.1016/j.freeradbiomed.2019.09.035

    Article  CAS  PubMed  Google Scholar 

  83. Barthó L, Holzer P (1995) The inhibitory modulation of guinea-pig intestinal peristalsis caused by capsaicin involves calcitonin gene-related peptide and nitric oxide. Naunyn Schmiedebergs Arch Pharmacol 353(1):102–109. https://doi.org/10.1007/BF00168922

    Article  PubMed  Google Scholar 

  84. Seok C, Jae Myeong S, Pawan Kumar S et al (2010) Capsaicin inhibits the spontaneous pacemaker activity in interstitial cells of Cajal from the small intestine of mouse. J Neurogastroenterol Motil 16(3):265–273. https://doi.org/10.5056/jnm.2010.16.3.265

    Article  Google Scholar 

  85. Zhao X, Dong B, Friesen M, Liu S, Zhu C, Yang C (2021) Capsaicin attenuates lipopolysaccharide-induced inflammation and barrier dysfunction in intestinal porcine epithelial cell line-J2. Front Physiol 12:715469. https://doi.org/10.3389/fphys.2021.715469

  86. Yoneshige A, Sasaki A, Miyazaki M et al (2009) Developmental changes in glycolipids and synchronized expression of nutrient transporters in the mouse small intestine. J Nutr Biochem 21(3):214–226. https://doi.org/10.1016/j.jnutbio.2008.12.009

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to express their gratitude for the financial support from the Guangzhou Science and Technology Plan Project (No. 202206010035) and the Qingyuan Science and Technology Plan Project (No. 2022KJJH068).

Funding

This work was supported by the Guangzhou Science and Technology Plan Project (No. 202206010035) and the Qingyuan Science and Technology Plan Project (No. 2022KJJH068).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, funding acquisition, project administration, resources, and supervision were performed by XS.

Formal analysis and methodology were performed by RW and YR.

The first draft of the manuscript was written by RW and HUJ.

Visualization and writing—review and editing were performed by RW.

Investigation and data curation were performed by ZZ and WJ.

All the authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Xugang Shu.

Ethics declarations

Ethics Approval

The experiments conducted for this study were carried out following the specifications established by the Chinese Ministry of Agriculture. The Animal Ethics Committee of Zhongkai University of Agriculture and Engineering approved (approval code: No. 20220722–2) geese experiments.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, R., Ren, Y., Javad, H.U. et al. Dietary Dihydromyricetin Zinc Chelate Supplementation Improves the Intestinal Health of Magang Geese. Biol Trace Elem Res (2024). https://doi.org/10.1007/s12011-024-04065-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12011-024-04065-z

Keywords

Navigation