Log in

The Correlation Between Serum Copper and Non-alcoholic Fatty Liver Disease in American Adults: an Analysis Based on NHANES 2011 to 2016

  • Research
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Copper functions as an essential micronutrient influencing diverse metabolic processes in mammals, encompassing oxidative stress responses, lipid metabolism, and participation in enzymatic reactions. However, the impact of serum copper on non-alcoholic fatty liver disease (NAFLD) remains controversial. Our aim was to explore the precise correlation between serum copper and NAFLD in a large-scale population-based study. A total of 1377 participants from the National Health and Nutrition Examination Survey (NHANES) 2011–2016 were included in our study. The diagnosis of NAFLD and its progress to advanced liver fibrosis were based on serological indexes. One-way ANOVA, Kruskal–Wallis H test, and Chi-square test were used to access variations between quartiles groups of serum copper. We conducted multivariate-adjusted logistic regression models and subgroup analyses to investigate the association between serum copper and NAFLD, along with several metabolic diseases. Among the 1377 participants, 661 were diagnosed with NAFLD, and 141 of whom were classified into advanced liver fibrosis. Higher serum copper levels (≥ 21.00 μmol/L) were associated with an increased incidence of NAFLD (odds ratio (OR) = 2.07 (1.38–3.10), p < 0.001), as well as advanced liver fibrosis (OR = 2.40 (1.17–5.19), p = 0.025). Moreover, serum copper exhibited a positive correlation with hypertension, overweight, and abdominal obesity, all of which have been identified as risk factors of NAFLD. Additionally, female participants, under the age of 60, and with a higher body mass index (BMI) (> 24.9 kg/m2) emerged as the most vulnerable subgroup concerning the relationship between serum copper and NAFLD. In the U.S. population, a notable association has been identified, linking elevated serum copper to an increased susceptibility for both the onset and progression of NAFLD, along with several metabolic disorders associated with NAFLD. The adverse effects of excess copper warrant attention in the context of public health considerations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

The data that supports the study’s conclusions is available upon request from the authors. The data used in this study are from a public database at https://www.cdc.gov/nchs/nhanes/index.htm,which can be accessed by everyone through the links provided in the paper.

References

  1. Dietrich P, Hellerbrand C (2014) Non-alcoholic fatty liver disease, obesity and the metabolic syndrome. Best Pract Res Clin Gastroenterol 28(4):637–653. https://doi.org/10.1016/j.bpg.2014.07.008

    Article  PubMed  CAS  Google Scholar 

  2. Loomba R, Friedman SL, Shulman GI (2021) Mechanisms and disease consequences of nonalcoholic fatty liver disease. Cell 184(10):2537–2564. https://doi.org/10.1016/j.cell.2021.04.015

    Article  PubMed  CAS  Google Scholar 

  3. Kumar S, Duan Q, Wu R, Harris EN, Su Q (2021) Pathophysiological communication between hepatocytes and non-parenchymal cells in liver injury from NAFLD to liver fibrosis. Adv Drug Deliv Rev 176. https://doi.org/10.1016/j.addr.2021.113869

  4. Hardy T, Oakley F, Anstee QM, Day CP (2016) Nonalcoholic fatty liver disease: pathogenesis and disease spectrum. Annu Rev Pathol 11(1):451–496. https://doi.org/10.1146/annurev-pathol-012615-044224

    Article  PubMed  CAS  Google Scholar 

  5. Arab JP, Arrese M, Trauner M (2018) Recent insights into the pathogenesis of nonalcoholic fatty liver disease. Annu Rev Pathol 13(1):321–350. https://doi.org/10.1146/annurev-pathol-020117-043617

    Article  PubMed  CAS  Google Scholar 

  6. Sheka AC, Adeyi O, Thompson J, Hameed B, Crawford PA, Ikramuddin S (2020) Nonalcoholic steatohepatitis. Jama 323(12). https://doi.org/10.1001/jama.2020.2298

  7. Powell EE, Wong VW-S, Rinella M (2021) Non-alcoholic fatty liver disease. Lancet 397(10290):2212–2224. https://doi.org/10.1016/s0140-6736(20)32511-3

    Article  PubMed  CAS  Google Scholar 

  8. Younossi Z, Anstee QM, Marietti M, Hardy T, Henry L, Eslam M, George J, Bugianesi E (2018) Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention. Nat Rev Gastroenterol Hepatol 15(1):11–20. https://doi.org/10.1038/nrgastro.2017.109

    Article  PubMed  Google Scholar 

  9. Huang DQ, El-Serag HB, Loomba R (2020) Global epidemiology of NAFLD-related HCC: trends, predictions, risk factors and prevention. Nat Rev Gastroenterol Hepatol 18(4):223–238. https://doi.org/10.1038/s41575-020-00381-6

    Article  PubMed  PubMed Central  Google Scholar 

  10. Buzzetti E, Pinzani M, Tsochatzis EA (2016) The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD). Metabolism 65(8):1038–1048. https://doi.org/10.1016/j.metabol.2015.12.012

    Article  PubMed  CAS  Google Scholar 

  11. Angulo P, Kleiner DE, Dam-Larsen S, Adams LA, Bjornsson ES, Charatcharoenwitthaya P, Mills PR, Keach JC, Lafferty HD, Stahler A, Haflidadottir S, Bendtsen F (2015) Liver fibrosis, but no other histologic features, is associated with long-term outcomes of patients with nonalcoholic fatty liver disease. Gastroenterology 149(2):389-397.e310. https://doi.org/10.1053/j.gastro.2015.04.043

    Article  PubMed  Google Scholar 

  12. Dhar D, Baglieri J, Kisseleva T, Brenner DA (2020) Mechanisms of liver fibrosis and its role in liver cancer. Exp Biol Med (Maywood) 245(2):96–108. https://doi.org/10.1177/1535370219898141

    Article  PubMed  CAS  Google Scholar 

  13. Cheah MCC, McCullough AJ, Goh GB-B (2017) Current modalities of fibrosis assessment in non-alcoholic fatty liver disease. J Clin Transl Hepatol XX(XX):1–11. https://doi.org/10.14218/jcth.2017.00009

  14. Morrell A, Tallino S, Yu L, Burkhead JL (2017) The role of insufficient copper in lipid synthesis and fatty-liver disease. IUBMB Life 69(4):263–270. https://doi.org/10.1002/iub.1613

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Yin JJ, Fu PP, Lutterodt H, Zhou YT, Antholine WE, Wamer W (2012) Dual role of selected antioxidants found in dietary supplements: crossover between anti- and pro-oxidant activities in the presence of copper. J Agric Food Chem 60(10):2554–2561. https://doi.org/10.1021/jf204724w

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Myint ZW, Oo TH, Thein KZ, Tun AM, Saeed H (2018) Copper deficiency anemia: review article. Ann Hematol 97(9):1527–1534. https://doi.org/10.1007/s00277-018-3407-5

    Article  PubMed  CAS  Google Scholar 

  17. Mohammad NS, Nazli R, Zafar H, Fatima S (2022) Effects of lipid based multiple micronutrients supplement on the birth outcome of underweight pre-eclamptic women: a randomized clinical trial. Pak J Med Sci 38(1):219–226. https://doi.org/10.12669/pjms.38.1.4396

    Article  PubMed  PubMed Central  Google Scholar 

  18. Chen J, Jiang Y, Shi H, Peng Y, Fan X, Li C (2020) The molecular mechanisms of copper metabolism and its roles in human diseases. Pflugers Arch 472(10):1415–1429. https://doi.org/10.1007/s00424-020-02412-2

    Article  PubMed  CAS  Google Scholar 

  19. Shanbhag VC, Gudekar N, Jasmer K, Papageorgiou C, Singh K, Petris MJ (2021) Copper metabolism as a unique vulnerability in cancer. Biochimica et Biophysica Acta (BBA) – Mol Cell Res 1868(2). https://doi.org/10.1016/j.bbamcr.2020.118893

  20. Yu L, Yousuf S, Yousuf S, Yeh J, Biggins SW, Morishima C, Shyu I, O’Shea-Stone G, Eilers B, Waldum A, Copié V, Burkhead J (2023) Copper deficiency is an independent risk factor for mortality in patients with advanced liver disease. Hepatol Commun 7(3):e0076–e0076. https://doi.org/10.1097/hc9.0000000000000076

    Article  PubMed  PubMed Central  Google Scholar 

  21. Song M, Schuschke DA, Zhou Z, Chen T, Pierce Jr WM, Wang R, Johnson WT, McClain CJ (2012) High fructose feeding induces copper deficiency in Sprague-Dawley rats: a novel mechanism for obesity related fatty liver. J Hepatol 56(2):433–440. https://doi.org/10.1016/j.jhep.2011.05.030

    Article  PubMed  CAS  Google Scholar 

  22. Sadighara P, Abedini AH, Irshad N, Ghazi-Khansari M, Esrafili A, Yousefi M (2023) Association between non-alcoholic fatty liver disease and heavy metal exposure: a systematic review. Biol Trace Elem Res 201(12):5607–5615. https://doi.org/10.1007/s12011-023-03629-9

    Article  PubMed  CAS  Google Scholar 

  23. Liu H, Guo H, Deng H, Cui H, Fang J, Zuo Z, Deng J, Li Y, Wang X, Zhao L (2020) Copper induces hepatic inflammatory responses by activation of MAPKs and NF-κB signalling pathways in the mouse. Ecotoxicol Environ Saf 201. https://doi.org/10.1016/j.ecoenv.2020.110806

  24. Bandmann O, Weiss KH, Kaler SG (2015) Wilson’s disease and other neurological copper disorders. Lancet Neurol 14(1):103–113. https://doi.org/10.1016/s1474-4422(14)70190-5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Chen J, Jiang Y, Shi H, Peng Y, Fan X, Li C (2020) The molecular mechanisms of copper metabolism and its roles in human diseases. Pflügers Arch Eur J Physiol 472(10):1415–1429. https://doi.org/10.1007/s00424-020-02412-2

    Article  CAS  Google Scholar 

  26. Guan D, Zhao L, Shi X, Ma X, Chen Z (2023) Copper in cancer: from pathogenesis to therapy. Biomed Pharmacother 163. https://doi.org/10.1016/j.biopha.2023.114791

  27. Lee JH, Kim D, Kim HJ, Lee CH, Yang JI, Kim W, Kim YJ, Yoon JH, Cho SH, Sung MW, Lee HS (2010) Hepatic steatosis index: a simple screening tool reflecting nonalcoholic fatty liver disease. Dig Liver Dis 42(7):503–508. https://doi.org/10.1016/j.dld.2009.08.002

    Article  PubMed  CAS  Google Scholar 

  28. Ruhl CE, Everhart JE (2015) Fatty liver indices in the multiethnic United States National Health and Nutrition Examination Survey. Aliment Pharmacol Ther 41(1):65–76. https://doi.org/10.1111/apt.13012

    Article  PubMed  CAS  Google Scholar 

  29. Cheah MC, McCullough AJ, Goh GB (2017) Current modalities of fibrosis assessment in non-alcoholic fatty liver disease. J Clin Transl Hepatol 5(3):261–271. https://doi.org/10.14218/JCTH.2017.00009

    Article  PubMed  PubMed Central  Google Scholar 

  30. Saklayen MG (2018) The global epidemic of the metabolic syndrome. Curr Hypertens Rep 20(2):12. https://doi.org/10.1007/s11906-018-0812-z

    Article  PubMed  PubMed Central  Google Scholar 

  31. Angulo P, Kleiner DE, Dam-Larsen S, Adams LA, Bjornsson ES, Charatcharoenwitthaya P, Mills PR, Keach JC, Lafferty HD, Stahler A, Haflidadottir S, Bendtsen F (2015) Liver fibrosis, but no other histologic features, is associated with long-term outcomes of patients with nonalcoholic fatty liver disease. Gastroenterology 149(2):389-397 e310. https://doi.org/10.1053/j.gastro.2015.04.043

    Article  PubMed  Google Scholar 

  32. Polyzos SA, Kountouras J, Mantzoros CS (2019) Obesity and nonalcoholic fatty liver disease: from pathophysiology to therapeutics. Metabolism 92:82–97. https://doi.org/10.1016/j.metabol.2018.11.014

    Article  PubMed  CAS  Google Scholar 

  33. Milic S, Lulic D, Stimac D (2014) Non-alcoholic fatty liver disease and obesity: biochemical, metabolic and clinical presentations. World J Gastroenterol 20(28):9330–9337. https://doi.org/10.3748/wjg.v20.i28.9330

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Lau LHS, Wong SH (2018) Microbiota, obesity and NAFLD. Adv Exp Med Biol 1061:111–125. https://doi.org/10.1007/978-981-10-8684-7_9

    Article  PubMed  CAS  Google Scholar 

  35. (2015) Nonalcoholic fatty liver disease. Nat Rev Dis Primers 1:15081. https://doi.org/10.1038/nrdp.2015.81

  36. Wu H, Li Q, Zhang K, Zhao J (2022) The association between serum copper and obesity and all-cause mortality: the NHANES 2011–2016. Environ Sci Pollut Res 30(11):31395–31407. https://doi.org/10.1007/s11356-022-24432-4

    Article  CAS  Google Scholar 

  37. Chen C, Zhou Q, Yang R, Wu Z, Yuan H, Zhang N, Zhi M, Zhang Y, Ni X, Wang Z, Gao D, Zhu X, Cai J, Yang Z, Sun L (2021) Copper exposure association with prevalence of non-alcoholic fatty liver disease and insulin resistance among US adults (NHANES 2011–2014). Ecotoxicol Environ Saf 218. https://doi.org/10.1016/j.ecoenv.2021.112295

  38. Einer C, Leitzinger C, Lichtmannegger J, Eberhagen C, Rieder T, Borchard S, Wimmer R, Denk G, Popper B, Neff F, Polishchuk EV, Polishchuk RS, Hauck SM, von Toerne C, Muller JC, Karst U, Baral BS, DiSpirito AA, Kremer AE, Semrau J, Weiss KH, Hohenester S, Zischka H (2019) A high-calorie diet aggravates mitochondrial dysfunction and triggers severe liver damage in Wilson disease rats. Cell Mol Gastroenterol Hepatol 7(3):571–596. https://doi.org/10.1016/j.jcmgh.2018.12.005

    Article  PubMed  Google Scholar 

  39. Zhong C-C, Zhao T, Hogstrand C, Chen F, Song C-C, Luo Z (2022) Copper (Cu) induced changes of lipid metabolism through oxidative stress-mediated autophagy and Nrf2/PPARγ pathways. J Nutrition Biochem 100. https://doi.org/10.1016/j.jnutbio.2021.108883

  40. Bandmann O, Weiss KH, Kaler SG (2015) Wilson’s disease and other neurological copper disorders. Lancet Neurol 14(1):103–113. https://doi.org/10.1016/S1474-4422(14)70190-5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Luo L, Xu J, Jiang R, Yao B, Di J (2023) Association between serum copper, zinc and their ratio and handgrip strength among adults: a study from National Health and Nutrition Examination Survey (NHANES) 2011–2014. Environ Sci Pollut Res Int 30(11):29100–29109. https://doi.org/10.1007/s11356-022-23998-3

    Article  PubMed  CAS  Google Scholar 

  42. Koehler EM, Schouten JN, Hansen BE, van Rooij FJ, Hofman A, Stricker BH, Janssen HL (2012) Prevalence and risk factors of non-alcoholic fatty liver disease in the elderly: results from the Rotterdam study. J Hepatol 57(6):1305–1311. https://doi.org/10.1016/j.jhep.2012.07.028

    Article  PubMed  Google Scholar 

  43. Frith J, Day CP, Henderson E, Burt AD, Newton JL (2009) Non-alcoholic fatty liver disease in older people. Gerontology 55(6):607–613. https://doi.org/10.1159/000235677

    Article  PubMed  CAS  Google Scholar 

  44. Alqahtani SA, Schattenberg JM (2021) NAFLD in the elderly. Clin Interv Aging 16:1633–1649. https://doi.org/10.2147/CIA.S295524

    Article  PubMed  PubMed Central  Google Scholar 

  45. He Y, Su Y, Duan C, Wang S, He W, Zhang Y, An X, He M (2023) Emerging role of aging in the progression of NAFLD to HCC. Ageing Res Rev 84:101833. https://doi.org/10.1016/j.arr.2022.101833

    Article  PubMed  Google Scholar 

  46. Bertolotti M, Lonardo A, Mussi C, Baldelli E, Pellegrini E, Ballestri S, Romagnoli D, Loria P (2014) Nonalcoholic fatty liver disease and aging: epidemiology to management. World J Gastroenterol 20(39):14185–14204. https://doi.org/10.3748/wjg.v20.i39.14185

    Article  PubMed  PubMed Central  Google Scholar 

  47. Buzzetti E, Parikh PM, Gerussi A, Tsochatzis E (2017) Jun). Gender differences in liver disease and the drug-dose gender gap. Pharmacol Res 120:97–108. https://doi.org/10.1016/j.phrs.2017.03.014

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We appreciate the NHAENS 2011-2016 staff and participants’ donation, data collection, and data sharing efforts.

Funding

The National Natural Science Foundation of China (No. 82172983) provided research funding for this study.

Author information

Authors and Affiliations

Authors

Contributions

LRL and YY: article conception and design. LRL, HK, XWS and JHL: data collection, data management, and formal statistical analysis. LRL and YY: manuscript writing. YC: manuscript revising. All authors involved in writing and approved the final manuscript.

Corresponding author

Correspondence to Ying Chang.

Ethics declarations

Ethics Approval

The NCHS Ethics Review Broad investigated and authorized the human subject’s research. Subjects provided written informed consent to participate in this investigation.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Statement of Significance

1. High serum copper levels are associated with NAFLD and its progression to advanced liver fibrosis in the US population, as detected by serological non-invasive tests.

2. Overweight, abdominal obesity, and hypertension are linked with NAFLD, and all of these parameters are strongly correlated with serum copper levels.

3. We found that some individuals are more susceptible to the adverse effects of elevated serum copper concentrations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Yi, Y., Shu, X. et al. The Correlation Between Serum Copper and Non-alcoholic Fatty Liver Disease in American Adults: an Analysis Based on NHANES 2011 to 2016. Biol Trace Elem Res (2024). https://doi.org/10.1007/s12011-023-04029-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12011-023-04029-9

Keywords

Navigation