Log in

Fe-NPs and Zn-NPs: Advancing Aquaculture Performance Through Nanotechnology

  • Review
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Aquaculture is a growing industry facing several challenges, including disease control, water quality management, and sustainable feed production. One potential solution to these challenges is the use of trace elements such as iron (Fe) and zinc (Zn), either in their conventional form or as nanoparticles (NPs). Aquatic animals need these micronutrients for normal growth, physiological processes, and overall health. In marine species, iron boosts development, immunity, and disease resistance. At the same time, zinc enhances metabolism, synthesizes essential enzymes, and produces hormones that play a part in defenses, growth, reproduction, and antioxidative activities. According to this review, species-specific requirements by different Fe and Zn compounds have all emphasized the impacts on animal growth and development, antioxidant capacity, reproductive efficiency, and immunological response. However, NPs of Fe and Zn have been found to have higher bioavailability and efficacy than conventional forms. This work examines the effects of applications of Fe and Fe nanoparticles (Fe-NPs) and Zn and Zn nanoparticles (Zn-NPs) in aquaculture. However, the source of Fe and Zn in aquaculture species and administration volume may significantly impact efficacy. Nanotechnology boosts the positive benefits of Fe and Zn by converting them to their nanoforms (Fe-NPs) and (Zn-NPs), which are better used by animals and have a broader intake range. As a result, Fe-NPs and Zn-NPs offer an effective method for using nutrients in aquaculture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

The data supporting the findings of this review article are derived from previously published studies and publicly available datasets. All references to these sources are provided within the article. No new data were generated specifically for this review. The authors have made efforts to ensure the accuracy and integrity of the data presented in this article. Readers are encouraged to consult the cited references for further details and access to the original data sources. Additionally, any supplementary materials associated with this review article are available upon request from the corresponding author.

References

  1. Abbas WT (2021) Advantages and prospective challenges of nanotechnology applications in fish cultures: a comparative review. Environ Sci Pollut Res 28(7):7669–7690

    Article  Google Scholar 

  2. Abdel-Hammed MSM, Allam SM, Metwally AA, El-Deeb KA, Abdel-Aziz MF (2019) A comparative study of Nano-iron and zinc as feed additive on growth performance, feed efficiency and chemical body composition of Nile tilapia fingerlings (Oreochromis nilotiucs). Egypt J Aquat Biol Fish 23(5 (Special Issue)):367–380

    Article  Google Scholar 

  3. Abdollahi Z, Taheri-Kafrani A, Bahrani SA, Kajani AA (2019) PEGAylated graphene oxide/superparamagnetic nanocomposite as a high-efficiency loading nanocarrier for controlled delivery of methotrexate. J Biotechnol 298:88–97

    Article  CAS  PubMed  Google Scholar 

  4. Afshari A, Sourinejad I, Gharaei A, Johari SA, Ghasemi Z (2021) The effects of diet supplementation with inorganic and nanoparticulate iron and copper on growth performance, blood biochemical parameters, antioxidant response and immune function of snow trout Schizothorax zarudnyi (Nikolskii, 1897). Aquaculture 539:736638

    Article  CAS  Google Scholar 

  5. Akbary P, Jahanbakhshi A (2019) Nano and macro iron oxide (Fe2O3) as feed additives: effects on growth, biochemical, activity of hepatic enzymes, liver histopathology and appetite-related gene transcript in goldfish (Carassius auratus). Aquaculture 510:191–197

    Article  CAS  Google Scholar 

  6. Akter N, Alam MJ, Jewel MAS, Ayenuddin M, Haque SK, Akter S (2018) Evaluation of dietary metallic iron nanoparticles as feed additive for growth and physiology of Bagridae catfish Clarias batrachus (Linnaeus, 1758). Int J Fish Aquat Stud 6(3):371–377

    Google Scholar 

  7. Alejandro S, Höller S, Meier B, Peiter E (2020) Manganese in plants: from acquisition to subcellular allocation. Front Plant Sci 11:300

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ali A, Ahmed I, Elfiky E (2021) Auto-combustion synthesis and characterization of iron oxide nanoparticles (α-Fe 2 O 3) for removal of lead ions from aqueous solution. J Inorg Organomet Polym Mater 31:384–396

    Article  CAS  Google Scholar 

  9. Anjugam M, Vaseeharan B, Iswarya A, Gobi N, Divya M, Thangaraj MP, Elumalai P (2018) Effect of β-1, 3 glucan binding protein based zinc oxide nanoparticles supplemented diet on immune response and disease resistance in Oreochromis mossambicus against Aeromonas hydrophila. Fish Shellfish Immunol 76:247–259

    Article  CAS  PubMed  Google Scholar 

  10. Awad A, Zaglool AW, Ahmed SA, Khalil SR (2019) Transcriptomic profile change, immunological response and disease resistance of Oreochromis niloticus fed with conventional and nano-zinc oxide dietary supplements. Fish Shellfish Immunol 93:336–343

    Article  CAS  PubMed  Google Scholar 

  11. Baloch AR, Fučíková M, Rodina M, Metscher B, Tichopád T, Shah MA, Franěk R, Pšenička M (2019) Delivery of iron oxide nanoparticles into primordial germ cells in sturgeon. Biomolecules 9(8):333

    Article  PubMed  PubMed Central  Google Scholar 

  12. Batool F, Iqbal MS, Khan S-U-D, Khan J, Ahmed B, Qadir MI (2021) Biologically synthesized iron nanoparticles (FeNPs) from Phoenix dactylifera have anti-bacterial activities. Sci Rep 11(1):1–9

    Article  Google Scholar 

  13. Beaver LM, Nkrumah-Elie YM, Truong L, Barton CL, Knecht AL, Gonnerman GD, Wong CP, Tanguay RL, Ho E (2017) Adverse effects of parental zinc deficiency on metal homeostasis and embryonic development in a zebrafish model. J Nutr Biochem 43:78–87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Brix KV, Tellis MS, Crémazy A, Wood CM (2016) Characterization of the effects of binary metal mixtures on short-term uptake of Ag, Cu, and Ni by rainbow trout (Oncorhynchus mykiss). Aquat Toxicol 180:236–246

    Article  CAS  PubMed  Google Scholar 

  15. Chupani L, Niksirat H, Velíšek J, Stará A, Hradilová Š, Kolařík J, Panáček A, Zusková E (2018) Chronic dietary toxicity of zinc oxide nanoparticles in common carp (Cyprinus carpio L.): tissue accumulation and physiological responses. Ecotoxicol Environ Saf 147:110–116

    Article  CAS  PubMed  Google Scholar 

  16. de Souza Trigueiro NS, Gonçalves BB, Dias FC, de Oliveira Lima EC, Rocha TL, Sabóia-Morais SMT (2021) Co-exposure of iron oxide nanoparticles and glyphosate-based herbicide induces DNA damage and mutagenic effects in the guppy (Poecilia reticulata). Environ Toxicol Pharmacol 81:103521

    Article  Google Scholar 

  17. Deepa S, Murugananthkumar R, Raj Gupta Y, Gowda KSM, Senthilkumaran B (2019) Effects of zinc oxide nanoparticles and zinc sulfate on the testis of common carp, Cyprinus carpio. Nanotoxicology 13(2):240–257

    Article  CAS  PubMed  Google Scholar 

  18. Dekani L, Johari SA, Joo HS (2019) Comparative toxicity of organic, inorganic and nanoparticulate zinc following dietary exposure to common carp (Cyprinus carpio). Sci Total Environ 656:1191–1198

    Article  CAS  PubMed  Google Scholar 

  19. Dowlath MJH, Musthafa SA, Khalith SM, Varjani S, Karuppannan SK, Ramanujam GM, Arunachalam AM, Arunachalam KD, Chandrasekaran M, Chang SW (2021) Comparison of characteristics and biocompatibility of green synthesized iron oxide nanoparticles with chemical synthesized nanoparticles. Environ Res 201:111585

    Article  CAS  PubMed  Google Scholar 

  20. Ebrahimi P, Changizi R, Ghobadi S, Shohreh P, Vatandoust S (2020) Effect of nano-Fe as feed supplement on growth performance, survival rate, blood parameters and immune functions of the stellate sturgeon (Acipenser stellatus). Russ J Mar Biol 46:493–500

    Article  CAS  Google Scholar 

  21. Elabd H, Youssuf H, Mahboub HH, Salem SM, Husseiny WA, Khalid A, El-Desouky HS, Faggio C (2022) Growth, hemato-biochemical, immune-antioxidant response, and gene expression in Nile tilapia (Oreochromis niloticus) received nano iron oxide-incorporated diets. Fish Shellfish Immunol 128:574–581

    Article  CAS  PubMed  Google Scholar 

  22. El-Saadony MT, Alkhatib FM, Alzahrani SO, Shafi ME, Abdel-Hamid SE, Taha TF, Aboelenin SM, Soliman MM, Ahmed NH (2021) Impact of mycogenic zinc nanoparticles on performance, behavior, immune response, and microbial load in Oreochromis niloticus. Saudi J Biol Sci 28(8):4592–4604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. El-Shenawy AM, Gad DM, Yassin SA (2019) Effect of iron nanoparticles on the development of fish farm feeds. Alexandria J Vet Sci 60(1)

  24. Evliyaoğlu E, Kilercioğlu S, Yılmaz HA, Turchini GM, Paolucci M, Clark TD, Demirkale İ, Eroldoğan OT (2022) Iron supplementation in plant-based aquafeed: Effects on growth performance, tissue composition, iron-related serum parameters and gene expression in rainbow trout (Oncorhynchus mykiss). Aquaculture 550:737884

    Article  Google Scholar 

  25. Farooq A, Verma AK, Hittinahalli CM, Harika N, Pai M (2023) Iron supplementation in aquaculture wastewater and its effect on the growth of spinach and pangasius in nutrient film technique based aquaponics. Agric Water Manag 277:108126

  26. Ghazi S, Diab AM, Khalafalla MM, Mohamed RA (2021) Synergistic effects of selenium and zinc oxide nanoparticles on growth performance, hemato-biochemical profile, immune and oxidative stress responses, and intestinal morphometry of Nile tilapia (Oreochromis niloticus). Biol Trace Elem Res:1–11

  27. Glencross BD (2020) A feed is still only as good as its ingredients: an update on the nutritional research strategies for the optimal evaluation of ingredients for aquaculture feeds. Aquacult Nutri 26(6):1871–1883

  28. Guo Y-L, Wu P, Jiang W-D, Liu Y, Kuang S-Y, Jiang J, Tang L, Tang W-N, Zhang Y-A, Zhou X-Q (2018) The impaired immune function and structural integrity by dietary iron deficiency or excess in gill of fish after infection with Flavobacterium columnare: regulation of NF-κB, TOR, JNK, p38MAPK, Nrf2 and MLCK signalling. Fish Shellfish Immunol 74:593–608

    Article  CAS  PubMed  Google Scholar 

  29. Gupta G, Srivastava PP, Kumar M, Varghese T, Chanu TI, Gupta S, Ande MP, Jana P (2021) The modulation effects of dietary zinc on reproductive performance and gonadotropins’(FSH and LH) expression in threatened Asian catfish, Clarias magur (Hamilton, 1822) broodfish. Aquac Res 52(5):2254–2265

    Article  CAS  Google Scholar 

  30. Hardy RW, Kaushik SJ (2021) Fish nutrition. Academic press

    Google Scholar 

  31. Hassan AT, Kwong RW (2020) The neurophysiological effects of iron in early life stages of zebrafish. Environ Pollut 267:115625

    Article  CAS  PubMed  Google Scholar 

  32. Hong G-K, Kuo J, Tew KS (2023) Iron fertilization can enhance the mass production of copepod, Pseudodiaptomus annandalei, for fish aquaculture. Life 13(2):529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ibrahim MS, El-Gendi GM, Ahmed AI, El-Haroun ER, Hassaan MS (2022) Nano zinc versus bulk zinc form as dietary supplied: effects on growth, intestinal enzymes and topography, and hemato-biochemical and oxidative stress biomarker in Nile tilapia (Oreochromis niloticus Linnaeus, 1758). Biol Trace Elem Res 200(3):1347–1360

    Article  CAS  PubMed  Google Scholar 

  34. Jiao L, Dai T, Lu J, Tao X, ** M, Sun P, Zhou Q (2022) Excess iron supplementation induced hepatopancreas lipolysis, destroyed intestinal function in Pacific white shrimp Litopenaeus vannamei. Mar Pollut Bull 176:113421

    Article  CAS  PubMed  Google Scholar 

  35. Karikari AY, Asmah R, Anku WW, Amisah S, Agbo NW, Telfer TC, Ross LG (2020) Heavy metal concentrations and sediment quality of a cage farm on Lake Volta, Ghana. Aquac Res 51(5):2041–2051

    Article  CAS  Google Scholar 

  36. Kazemi E, Sourinejad I, Ghaedi A, Johari SA, Ghasemi Z (2020) Effect of different dietary zinc sources (mineral, nanoparticulate, and organic) on quantitative and qualitative semen attributes of rainbow trout (Oncorhynchus mykiss). Aquaculture 515:734529

    Article  CAS  Google Scholar 

  37. Khosravi-Katuli K, Prato E, Lofrano G, Guida M, Vale G, Libralato G (2017) Effects of nanoparticles in species of aquaculture interest. Environ Sci Pollut Res 24:17326–17346

    Article  Google Scholar 

  38. Kishawy AT, Roushdy EM, Hassan FA, Mohammed HA, Abdelhakim TM (2020) Comparing the effect of diet supplementation with different zinc sources and levels on growth performance, immune response and antioxidant activity of tilapia, Oreochromis niloticus. Aquac Nutr 26(6):1926–1942

    Article  CAS  Google Scholar 

  39. Kukla SP, Chelomin VP, Mazur AA, Slobodskova VV (2022) Zinc oxide nanoparticles induce DNA damage in sand dollar Scaphechinus mirabilis sperm. Toxics 10(7):348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kumar N, Chandan NK, Wakchaure G, Singh NP (2020) Synergistic effect of zinc nanoparticles and temperature on acute toxicity with response to biochemical markers and histopathological attributes in fish. Comp Biochem Physiol Part - C: Toxicol Pharmacol 229:108678

    CAS  Google Scholar 

  41. Kumar N, Gupta SK, Bhushan S, Singh NP (2019) Impacts of acute toxicity of arsenic (III) alone and with high temperature on stress biomarkers, immunological status and cellular metabolism in fish. Aquat Toxicol 214:105233

    Article  CAS  PubMed  Google Scholar 

  42. Kumar N, Krishnani K, Kumar P, Jha AK, Gupta SK, Singh N (2017a) Dietary zinc promotes immuno-biochemical plasticity and protects fish against multiple stresses. Fish Shellfish Immunol 62:184–194

    Article  CAS  PubMed  Google Scholar 

  43. Kumar N, Krishnani K, Kumar P, Singh NP (2017b) Zinc nanoparticles potentiates thermal tolerance and cellular stress protection of Pangasius hypophthalmus reared under multiple stressors. J Therm Biol 70:61–68

    Article  CAS  PubMed  Google Scholar 

  44. Kumar N, Krishnani KK, Singh NP (2018) Effect of dietary zinc-nanoparticles on growth performance, anti-oxidative and immunological status of fish reared under multiple stressors. Biol Trace Elem Res 186(1):267–278

    Article  CAS  PubMed  Google Scholar 

  45. Kumar N, Nitish C, Kumar Paritosh (2021) Impact of zinc nanoparticles on aquatic ecosystems: risks and benefits. https://doi.org/10.1016/B978-0-12-822836-4.00025-2

  46. Lall SP, Kaushik SJ (2021) Nutrition and metabolism of minerals in fish. Animals 11(09):2711

  47. Latif F, Aziz S, Kousar S, Iqbal R and Shahzad MM, (2022) In: Abbas RZ, Khan A, Liu P, Saleemi MK. Applications of nanotechnology in fish health. 2. https://doi.org/10.47278/book.ahp/2022.66

  48. Luo J, Zhou Q, Zhang X, Zhu T, Zhang Y, Yang Z, Guo C, **e S, Lu J, Yuan Y (2021) Dietary zinc levels affects lipid and fatty acid metabolism in hepatopancreas of mud crab (Scylla paramamosain). Aquaculture 545:737274

    Article  CAS  Google Scholar 

  49. Luo J, Zhu T, ** M, Cheng X, Yuan Y, Wang X, Lu J, Jiao L, Tocher DR, Zhou Q (2020) Influence of dietary zinc on growth, zinc bioaccumulation and expression of genes involved in antioxidant and innate immune in juvenile mud crabs (Scylla paramamosain). Br J Nutr 124(7):681–692

    Article  CAS  PubMed  Google Scholar 

  50. Mahboub HH, Shahin K, Zaglool AW, Roushdy EM, Ahmed SA (2020) Efficacy of nano zinc oxide dietary supplements on growth performance, immunomodulation and disease resistance of African catfish Clarias gariepinus. Dis Aquat Org 142:147–160

    Article  Google Scholar 

  51. Meiler KA, Kumar V (2021) Organic and inorganic zinc in the diet of a commercial strain of diploid and triploid rainbow trout (Oncorhynchus mykiss): effects on performance and mineral retention. Aquaculture 545:737126

    Article  CAS  Google Scholar 

  52. Mohammady EY, Soaudy MR, Abdel-Rahman A, Abdel-Tawwab M, Hassaan MS (2021) Comparative effects of dietary zinc forms on performance, immunity, and oxidative stress-related gene expression in Nile tilapia, Oreochromis niloticus. Aquaculture 532:736006

    Article  CAS  Google Scholar 

  53. Mohseni M, Hamidoghli A, Bai SC (2021) Organic and inorganic dietary zinc in beluga sturgeon (Huso huso): effects on growth, hematology, tissue concertation and oxidative capacity. Aquaculture 539:736672

    Article  CAS  Google Scholar 

  54. Mokarram M, Saber A, Sheykhi V (2020) Effects of heavy metal contamination on river water quality due to release of industrial effluents. J Clean Prod 277:123380

    Article  CAS  Google Scholar 

  55. Mondal AH, Behera T, Swain P, Das R, Sahoo SN, Mishra SS, Das J, Ghosh K (2020) Nano zinc vis-à-vis inorganic Zinc as feed additives: effects on growth, activity of hepatic enzymes and non-specific immunity in rohu, Labeo rohita (Hamilton) fingerlings. Aquac Nutr 26(4):1211–1222

    Article  CAS  Google Scholar 

  56. Mosca L, Falvo E, Ceci P, Poser E, Genovese I, Guarguaglini G, Colotti G (2017) Use of ferritin-based metal-encapsulated nanocarriers as anticancer agents. Appl Sci 7(1):101

    Article  Google Scholar 

  57. Mukherjee K, Saha A, Bhattacharjee S, Mallick A, Sarkar B (2022) Nanoscale iron for sustainable aquaculture and beyond. Biocatal Agric Biotechnol 44:102440

    Article  Google Scholar 

  58. Muraina IA, Maret W, Bury NR, Hogstrand C (2020) Hatching gland development and hatching in zebrafish embryos: a role for zinc and its transporters Zip10 and Znt1a. Biochem Biophys Res Commun 528(4):698–705

    Article  CAS  PubMed  Google Scholar 

  59. Musharraf M, Khan MA (2019) Requirement of fingerling Indian major carp, Labeo rohita (Hamilton) for dietary iron based on growth, whole body composition, haematological parameters, tissue iron concentration and serum antioxidant status. Aquaculture 504:148–157

    Article  CAS  Google Scholar 

  60. Nirmalkar R, Suresh E, Felix N, Kathirvelpandian A, Nazir MI, Ranjan A (2022) Synthesis of iron nanoparticles using Sargassum wightii extract and its impact on serum biochemical profile and growth response of Etroplus suratensis juveniles. Biol Trace Elem Res:1–8

  61. Özgür ME, Ulu A, Balcıoğlu S, Özcan I, Köytepe S, Ateş B (2018) The toxicity assessment of iron oxide (Fe3O4) nanoparticles on physical and biochemical quality of rainbow trout spermatozoon. Toxics 6(4):62

    Article  PubMed  PubMed Central  Google Scholar 

  62. Paulpandian P, Beevi IS, Somanath B, Kamatchi RK, Paulraj B, Faggio C (2022) Impact of Camellia sinensis iron oxide nanoparticle on growth, hemato-biochemical and antioxidant capacity of blue gourami (Trichogaster trichopterus) fingerlings. Biol Trace Elem Res:1–13

  63. Prabhu PAJ, Silva MS, Kröeckel S, Holme M-H, Ørnsrud R, Amlund H, Lock E-J, Waagbø R (2019) Effect of levels and sources of dietary manganese on growth and mineral composition of post-smolt Atlantic salmon fed low fish meal, plant-based ingredient diets. Aquaculture 512:734287

    Article  Google Scholar 

  64. Prabhu PAJ, Stewart T, Silva M, Amlund H, Ørnsrud R, Lock E-J, Waagbo R, Hogstrand C (2018) Zinc uptake in fish intestinal epithelial model RTgutGC: impact of media ion composition and methionine chelation. J Trace Elem Med Biol 50:377–383

    Article  Google Scholar 

  65. Rajan MR, Devi MM, Suganya D (2021) Impact of different quantity of green synthesized iron oxide nanoparticles on growth, enzymatic, biochemical changes and hematology of zebrafish Danio rerio. Int J Pharm Sci Nanotechnol 14(5):5603–5611

    CAS  Google Scholar 

  66. Rohani MF, Bristy AA, Hasan J, Hossain MK, Shahjahan M (2022) Dietary zinc in association with vitamin E promotes growth performance of Nile tilapia. Biol Trace Elem Res 200(9):4150–4159

    Article  CAS  PubMed  Google Scholar 

  67. Roth M-P, Meynard D, Coppin H (2019) Regulators of hepcidin expression. Vitam Horm 110:101–129

    Article  CAS  PubMed  Google Scholar 

  68. Sallam AE, Mansour AT, Alsaqufi AS, Salem ME-S, El-Feky MM (2020) Growth performance, anti-oxidative status, innate immunity, and ammonia stress resistance of Siganus rivulatus fed diet supplemented with zinc and zinc nanoparticles. Aquac Rep 18:100410

    Article  Google Scholar 

  69. Sarkar B, Mahanty A, Gupta SK, Choudhury AR, Daware A, Bhattacharjee S (2022) Nanotechnology: a next-generation tool for sustainable aquaculture. Aquaculture 546:737330

    Article  CAS  Google Scholar 

  70. Sayadi MH, Mansouri B, Shahri E, Tyler CR, Shekari H, Kharkan J (2020) Exposure effects of iron oxide nanoparticles and iron salts in blackfish (Capoeta fusca): acute toxicity, bioaccumulation, depuration, and tissue histopathology. Chemosphere 247:125900

    Article  CAS  PubMed  Google Scholar 

  71. Shah BR, Mraz J (2020) Advances in nanotechnology for sustainable aquaculture and fisheries. Rev Aquac 12(2):925–942

    Article  Google Scholar 

  72. Shahpar Z, Johari SA (2019) Effects of dietary organic, inorganic, and nanoparticulate zinc on rainbow trout, Oncorhynchus mykiss larvae. Biol Trace Elem Res 190:535–540

    Article  CAS  PubMed  Google Scholar 

  73. Sherif AH, Abdelsalam M, Ali NG, Mahrous KF (2022) Zinc oxide nanoparticles boost the immune responses in Oreochromis niloticus and improve disease resistance to Aeromonas hydrophila infection. Biol Trace Elem Res:1–10

  74. Shukry M, Albogami S, Gewaily M, Amer AA, Soliman AA, Alsaiad SM, El-Shehawi AM, Dawood MA (2022) Growth performance, antioxidative capacity, and intestinal histomorphology of grey mullet (Liza ramada)–fed dietary zinc nanoparticles. Biol Trace Elem Res (5):2406–2415

  75. Skalny AV, Aschner M, Lei XG, Gritsenko VA, Santamaria A, Alekseenko SI, Prakash NT, Chang J-S, Sizova EA, Chao JC (2021) Gut microbiota as a mediator of essential and toxic effects of zinc in the intestines and other tissues. Int J Mol Sci 22(23):13074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Song Y, Cai X, Bu X, Liu S, Song M, Yang Y, Wang X, Shi Q, Qin J, Chen L (2023) Effects of iron and vitamin C on growth performance, iron utilization, antioxidant capacity, nonspecific immunity, and disease resistance to Aeromonas hydrophila in Chinese mitten crab (Eriocheir sinensis). Aquac Nutr 2023

  77. Swain P, Das R, Das A, Padhi SK, Das KC, Mishra SS (2019) Effects of dietary zinc oxide and selenium nanoparticles on growth performance, immune responses and enzyme activity in rohu, Labeo rohita (Hamilton). Aquac Nutr 25(2):486–494

    Article  CAS  Google Scholar 

  78. Taheri S, Banaee M, Haghi BN, Mohiseni M (2017) Effects of dietary supplementation of zinc oxide nanoparticles on some biochemical biomarkers in common carp (Cyprinus carpio). Int J Aquat Biol 5(5):286–294

    Google Scholar 

  79. Tarifeño-Saldivia E, Aguilar A, Contreras D, Mercado L, Morales-Lange B, Márquez K, Henríquez A, Riquelme-Vidal C, Boltana S (2018) Iron overload is associated with oxidative stress and nutritional immunity during viral infection in fish. Front Immunol 9:1296

    Article  PubMed  PubMed Central  Google Scholar 

  80. Tawfik M, Moustafa M, Abumourad I, El-Meliegy E, Refai M (2017) Evaluation of nano zinc oxide feed additive on tilapia growth and immunity. 15th International Conference on Environmental Science and Technology, Rhodes, Greece

    Google Scholar 

  81. Thangapandiyan S, Monika S (2020) Green synthesized zinc oxide nanoparticles as feed additives to improve growth, biochemical, and hematological parameters in freshwater fish Labeo rohita. Biol Trace Elem Res 195:636–647

    Article  CAS  PubMed  Google Scholar 

  82. Thomason RT, Pettiglio MA, Herrera C, Kao C, Gitlin JD, Bartnikas TB (2017) Characterization of trace metal content in the develo** zebrafish embryo. PLoS One 12(6):e0179318

    Article  PubMed  PubMed Central  Google Scholar 

  83. Uzo-God OC, Agarwal A, Singh N (2019) Effects of dietary nano and macro iron oxide (Fe2O3) on the growth, biochemical, and hematological profiles of African catfish (Clarias gariepinus) fingerlings. J Appl Aquac 31(2):153–171

    Article  Google Scholar 

  84. Valenzuela-Muñoz V, Valenzuela-Miranda D, Gonçalves A, Novoa B, Figueras A, Gallardo-Escárate C (2020) Induced-iron overdose modulate the immune response in Atlantic salmon increasing the susceptibility to Piscirickettsia salmonis infection. Aquaculture 521:735058

    Article  Google Scholar 

  85. Wang N, Wang X, Lin Z, Chen X, Bu X, Liu S, Lei Y, Shi Q, Qin J, Chen L (2022) Effects of dietary Zn on growth, antioxidant capacity, immunity and tolerance to lipopolysaccharide challenge in juvenile Chinese mitten crab Eriocheir sinensis. Aquac Res 53(3):1110–1120

    Article  CAS  Google Scholar 

  86. Yadav AK, Sinha AK, Egnew N, Romano N, Kumar V (2020) Potential amelioration of waterborne iron toxicity in channel catfish (Ictalurus punctatus) through dietary supplementation of vitamin C. Ecotoxicol Environ Saf 205:111337

    Article  CAS  PubMed  Google Scholar 

  87. Yang C-H, Kung T-A, Chen P-J (2019) Differential alteration in reproductive toxicity of medaka fish on exposure to nanoscale zerovalent iron and its oxidation products. Environ Pollut 252:1920–1932

    Article  CAS  PubMed  Google Scholar 

  88. Younus N, Zuberi A, Mahmoood T, Akram W, Ahmad M (2020) Comparative effects of dietary micro-and nano-scale chitosan on the growth performance, non-specific immunity, and resistance of silver carp Hypophthalmichthys molitrix against Staphylococcus aureus infection. Aquac Int 28:2363–2378

    Article  CAS  Google Scholar 

  89. Yu H-R, Li L-Y, Shan L-L, Gao J, Ma C-Y, Li X (2021) Effect of supplemental dietary zinc on the growth, body composition and anti-oxidant enzymes of coho salmon (Oncorhynchus kisutch) alevins. Aquac Rep 20:100744

    Article  Google Scholar 

  90. Zafar N, Khan MA (2020) Effects of dietary iron on growth, haematology, oxidative stress and hepatic ascorbic acid concentration of stinging catfish Heteropneustes fossilis. Aquaculture 516:734642

    Article  CAS  Google Scholar 

  91. Zahin N, Anwar R, Tewari D, Kabir MT, Sajid A, Mathew B, Uddin MS, Aleya L, Abdel-Daim MM (2020) Nanoparticles and its biomedical applications in health and diseases: special focus on drug delivery. Environ Sci Pollut Res 27:19151–19168

    Article  CAS  Google Scholar 

  92. Zahra N, Hafeez MB, Shaukat K, Wahid A, Hasanuzzaman M (2021) Fe toxicity in plants: impacts and remediation. Physiol Plant 173(1):201–222

    CAS  PubMed  Google Scholar 

  93. Zhang Y, Wang S, Li K, Ruan D, Chen W, **a W, Wang S, Abouelezz K, Zheng C (2020) Estimation of dietary zinc requirement for laying duck breeders: effects on productive and reproductive performance, egg quality, tibial characteristics, plasma biochemical and antioxidant indices, and zinc deposition. Poult Sci 99(1):454–462

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This publication is based on a work supported by Zoology department, Government College University Faisalabad, Pakistan.

Author information

Authors and Affiliations

Authors

Contributions

Farkhanda Asad contributed to the conceptualization and design of the review article. Navaira contributed to the writing and editing of the manuscript. She actively contributed to the organization of the manuscript. Aiman contributed to the writing of several sections. Noshaba and Shehar Bano worked on the plagiarism. Rafia contributed to the collection of material. Shahbaz participated in the screening and extraction of relevant data.

Corresponding author

Correspondence to Farkhanda Asad.

Ethics declarations

Ethical Approval

Not applicable. There is no use of animals because it is a review article.

Consent to Participate

Not applicable

Consent to Publish

Not applicable

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• In the context of aquaculture, this review paper underlines the importance of iron and zinc by highlighting their crucial involvement in a number of physiological processes that occur in aquatic organisms.

• The article gives a general review of the dietary needs for iron and zinc in aquaculture species in order to promote healthy development, reproduction, and immunological function.

• It draws attention to the potential advantages of taking iron and zinc supplements at the same time to increase overall productivity.

• It also emphasizes the advantages of adding nanoparticles to diverse aquatic species' growth performance, nutrient intake, antioxidant capacity, and disease resistance.

Supplementary Information

ESM 1

(PDF 1347 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asad, F., Batool, N., Nadeem, A. et al. Fe-NPs and Zn-NPs: Advancing Aquaculture Performance Through Nanotechnology. Biol Trace Elem Res 202, 2828–2842 (2024). https://doi.org/10.1007/s12011-023-03850-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-023-03850-6

Keywords

Navigation