Log in

Involvement of TRPM7 Channel on the Induction of Diabetic Neuropathic Pain in Mice: Protective Role of Selenium and Curcumin

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Excessive levels of the mitochondrial reactive oxygen radical (mitSOX) and Ca2+ influx were found to cause neuropathic pain in patients with diabetes mellitus (DM). Naltriben (NLT) and mitSOX activate the transient receptor (TRP) melastatin 7 (TRPM7) channel, but antioxidants and carvacrol inhibit it. Selenium (Se) and curcumin (CRC) have been thoroughly studied for their modulator effects on streptozotocin (STZ)-induced neuropathic pain, apoptosis, and oxidative stress through the blockage of TRP channels in dorsal root ganglion (DRG) neurons. It has not yet been fully understood how Se and CRC protect against STZ-induced neuropathic pain by modulating TRPM7. Here, we assessed how Se and CRC affected the Ca2+ influx, mitSOX-mediated oxidative damage, and apoptosis in the DRGs of mice through modifying TRPM7 activity. Seven groups (control, Se, CRC, STZ, STZ + Se, STZ + CRC, and STZ + Se + CRC) were induced from the 56 male mice. We observed that the STZ-induced stimulation of TRPM7 increased mechanical neuropathic pain (von Frey), thermal neuropathic pain (hot plate), cytosolic Ca2+, TRPM7 current density, TRPM7 expression, lipid peroxidation, mitSOX, cytosolic ROS, apoptosis, caspase-3, caspase-8, and caspase-9 concentrations, whereas Se and CRC therapies diminished the alterations. The STZ-mediated decreases of DRG viability, brain glutathione, glutathione peroxidase, vitamin A, and vitamin E concentrations were also upregulated in the treatment groups by the therapies. These findings collectively imply that an imbalance of neuropathic pain, oxidative neurotoxicity, and apoptosis in the mice is caused by the STZ-mediated activation of TRPM7. However, the downregulation of TRPM7 activity caused by the injections of Se and CRC reduced the neurotoxicity and apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

The treatments and animal tissue samplings in the current study were induced in BMAU. The current analyses were performed in BSN Health, Analyses, Innovation, Consultancy, Organization, Agriculture, and Industry Ltd. (Göller Bölgesi Teknokenti, Isparta, Turkey), and they are available from the Professor M. Nazıroğlu on reasonable request. All graphics including graphical abstract in the manuscript were prepared by the correspondence author (MN).

Abbreviations

[Ca2+]i :

Cytosolic free calcium ion

AGS:

Human gastric adenocarcinoma cell line

CLSM:

Confocal laser scanning microscope

CNT:

Control

CRC:

Curcumin

CRV:

Carvacrol

cytROS:

Cytosolic free reactive oxygen radicals

DiNP:

Diabetic neuropathy

DM:

Diabetes mellitus

DRG:

Dorsal root ganglion

GSH:

Glutathione

GPx:

Glutathione peroxidase

LPO:

Lipid peroxidation

mitSOX:

Mitochondrial free reactive oxygen radicals

MMD:

Mitochondrial membrane depolarization

NLT:

Naltriben

Se:

Selenium

TRP:

Transient receptor potential

TRPM7:

Transient receptor potential melastatin 7

References

  1. Steinbrenner H, Duntas LH, Rayman MP (2022) The role of selenium in type-2 diabetes mellitus and its metabolic comorbidities. Redox Biol 50:102236. https://doi.org/10.1016/j.redox.2022.102236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Dewanjee S, Das S, Das AK et al (2018) Molecular mechanism of diabetic neuropathy and its pharmacotherapeutic targets. Eur J Pharmacol 833:472–523. https://doi.org/10.1016/j.ejphar.2018.06.034

    Article  CAS  PubMed  Google Scholar 

  3. Nazıroğlu M, Dikici DM, Dursun S (2012) Role of oxidative stress and Ca2+ signaling on molecular pathways of neuropathic pain in diabetes: focus on TRP channels. Neurochem Res 37(10):2065–2075. https://doi.org/10.1007/s11064-012-0850-x

    Article  CAS  PubMed  Google Scholar 

  4. Durán AM, Beeson WL, Firek A, Cordero-MacIntyre Z, De León M (2022) Dietary Omega-3 Polyunsaturated Fatty-Acid Supplementation Upregulates Protective Cellular Pathways in Patients with Type 2 Diabetes Exhibiting Improvement in Painful Diabetic Neuropathy. Nutrients 14(4):761. https://doi.org/10.3390/nu14040761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Díaz A, López-Grueso R, Gambini J et al (2019) Sex Differences in Age-Associated Type 2 Diabetes in Rats-Role of Estrogens and Oxidative Stress. Oxid Med Cell Longev 2019:6734836. https://doi.org/10.1155/2019/6734836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kahya MC, Nazıroğlu M, Övey İS (2017) Modulation of diabetes-induced oxidative stress, apoptosis, and Ca(2+) entry through TRPM2 and TRPV1 channels in dorsal root ganglion and hippocampus of diabetic rats by melatonin and selenium. Mol Neurobiol 54(3):2345–2360. https://doi.org/10.1007/s12035-016-9727-3

    Article  CAS  PubMed  Google Scholar 

  7. Sajic M, Rumora AE, Kanhai AA et al (2021) High Dietary Fat Consumption Impairs Axonal Mitochondrial Function In Vivo. J Neurosci 41(19):4321–4334. https://doi.org/10.1523/JNEUROSCI.1852-20.2021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Verkhratsky A, Fernyhough P (2008) Mitochondrial malfunction and Ca2+ dyshomeostasis drive neuronal pathology in diabetes. Cell Calcium l 44(1):112–122. https://doi.org/10.1016/j.ceca.2007.11.010

    Article  CAS  Google Scholar 

  9. Düzova H, Nazıroğlu M, Çiğ B, Gürbüz P, Akatlı AN (2021) Noopept Attenuates Diabetes-Mediated Neuropathic Pain and Oxidative Hippocampal Neurotoxicity via Inhibition of TRPV1 Channel in Rats. Mol Neurobiol 58(10):5031–5051. https://doi.org/10.1007/s12035-021-02478-8

    Article  CAS  PubMed  Google Scholar 

  10. Garcilazo C, Cavallasca JA, Musuruana JL (2010) Shoulder manifestations of diabetes mellitus. Curr Diabetes Rev 6(5):334–340. https://doi.org/10.2174/157339910793360824

    Article  PubMed  Google Scholar 

  11. Düll MM, Riegel K, Tappenbeck J, Ries V, Strupf M, Fleming T, Sauer SK, Namer B (2019) Methylglyoxal causes pain and hyperalgesia in human through C-fiber activation. Pain 160(11):2497–2507. https://doi.org/10.1097/j.pain.0000000000001644

    Article  CAS  PubMed  Google Scholar 

  12. Hofmann T, Schäfer S, Linseisen M, Sytik L, Gudermann T, Chubanov V (2014) Activation of TRPM7 channels by small molecules under physiological conditions. Pflugers Arch 466(12):2177–2189. https://doi.org/10.1007/s00424-014-1488-0

    Article  CAS  PubMed  Google Scholar 

  13. Parnas M, Peters M, Dadon D, Lev S, Vertkin I, Slutsky I, Minke B (2009) Carvacrol is a novel inhibitor of Drosophila TRPL and mammalian TRPM7 channels. Cell Calcium 45(3):300–309. https://doi.org/10.1016/j.ceca.2008.11.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chen W, Xu B, **ao A et al (2015) TRPM7 inhibitor carvacrol protects brain from neonatal hypoxic-ischemic injury. Mol Brain 8:11. https://doi.org/10.1186/s13041-015-0102-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Khalil A, Kovac S, Morris G, Walker MC (2017) Carvacrol after status epilepticus (SE) prevents recurrent SE, early seizures, cell death, and cognitive decline. Epilepsia 58(2):263–273. https://doi.org/10.1111/epi.13645

    Article  CAS  PubMed  Google Scholar 

  16. Gültekin F, Nazıroğlu M, Savaş HB, Çiğ B (2018) Calorie restriction protects against apoptosis, mitochondrial oxidative stress and increased calcium signaling through inhibition of TRPV1 channel in the hippocampus and dorsal root ganglion of rats. Metab Brain Dis 33(5):1761–1774. https://doi.org/10.1007/s11011-018-0289-0

    Article  CAS  PubMed  Google Scholar 

  17. Vandewauw I, Owsianik G, Voets T (2013) Systematic and quantitative mRNA expression analysis of TRP channel genes at the single trigeminal and dorsal root ganglion level in mouse. BMC Neurosci 14:21. https://doi.org/10.1186/1471-2202-14-21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kim YH, Lee S, Yang H, Chun YL, Kim D, Yeo SG, Park C, Jung J, Huh Y (2020) Inhibition of transient receptor potential melastatin 7 (TRPM7) protects against Schwann cell trans-dedifferentiation and proliferation during Wallerian degeneration. Anim Cells Syst (Seoul) 24(4):189–196. https://doi.org/10.1080/19768354.2020.1804445

    Article  CAS  PubMed  Google Scholar 

  19. Miller BA, Zhang W (2011) TRP channels as mediators of oxidative stress. Adv Exp Med Biol 704:531–544. https://doi.org/10.1007/978-94-007-0265-3_29

    Article  CAS  PubMed  Google Scholar 

  20. Dai SH, Li YW, Hong QX, Su T, Xu SY (2021) Exaggerated activities of TRPM7 underlie bupivacaine-induced neurotoxicity in the SH-SY5Y cells preconditioned with high glucose. J Biochem Mol Toxicol 35(8):e22826. https://doi.org/10.1002/jbt.22826

    Article  CAS  PubMed  Google Scholar 

  21. Chokshi R, Bennett O, Zhelay T, Kozak JA (2021) NSAIDs Naproxen, Ibuprofen, Salicylate, and Aspirin Inhibit TRPM7 Channels by Cytosolic Acidification. Front Physiol 12:727549. https://doi.org/10.3389/fphys.2021.727549

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kim MC, Lee HJ, Lim B, Ha KT, Kim SY, So I, Kim BJ (2014) Quercetin induces apoptosis by inhibiting MAPKs and TRPM7 channels in AGS cells. Int J Mol Med 33(6):1657–1663. https://doi.org/10.3892/ijmm.2014.1704

    Article  CAS  PubMed  Google Scholar 

  23. Dera HA, Alassiri M, Kahtani RA, Eleawa SM, AlMulla MK, Alamri A (2022) Melatonin attenuates cerebral hypoperfusion-induced hippocampal damage and memory deficits in rats by suppressing TRPM7 channels. Saudi J Biol Sci 29(4):2958–2968. https://doi.org/10.1016/j.sjbs.2022.01.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Giordano S, Darley-Usmar V, Zhang J (2013) Autophagy as an essential cellular antioxidant pathway in neurodegenerative disease. Redox Biol 2:82–90. https://doi.org/10.1016/j.redox.2013.12.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Schweizer U, Bräuer AU, Köhrle J, Nitsch R, Savaskan NE (2004) Selenium and brain function: a poorly recognized liaison. Brain Res Brain Res Rev 45:164–178

    Article  CAS  PubMed  Google Scholar 

  26. Nazıroğlu M, Öz A, Yıldızhan K (2020) Selenium and Neurological Diseases: Focus on Peripheral Pain and TRP Channels. Curr Neuropharmacol 18(6):501–517

    Article  PubMed  PubMed Central  Google Scholar 

  27. Zhou J, Wu N, Lin L (2020) Curcumin suppresses apoptosis and inflammation in hypoxia/reperfusion-exposed neurons via Wnt signaling pathway. Med Sci Monit 26:e920445. https://doi.org/10.12659/MSM.920445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hollborn M, Chen R, Wiedemann P, Reichenbach A, Bringmann A, Kohen L (2013) Cytotoxic effects of curcumin in human retinal pigment epithelial cells. PLoS One 8(3):e59603. https://doi.org/10.1371/journal.pone.0059603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sharma S, Kulkarni SK, Agrewala JN, Chopra K (2006) Curcumin attenuates thermal hyperalgesia in a diabetic mouse model of neuropathic pain. Eur J Pharmacol 536(3):256–261. https://doi.org/10.1016/j.ejphar.2006.03.006

    Article  CAS  PubMed  Google Scholar 

  30. Özkaya D, Nazıroğlu M (2020) Curcumin diminishes cisplatin-induced apoptosis and mitochondrial oxidative stress through inhibition of TRPM2 channel signaling pathway in mouse optic nerve. J Recept Signal Transduct Res 40(2):97–108. https://doi.org/10.1080/10799893.2020.1720240

    Article  CAS  PubMed  Google Scholar 

  31. Ertilav K (2019) Levetiracetam modulates hypoxia-induced inflammation and oxidative stress via inhibition of TRPV1 channel in the DBTRG glioblastoma cell line. J Cell Neurosci Oxid Stress 11(3):885–894. https://doi.org/10.37212/jcnos.715227

    Article  Google Scholar 

  32. Akyuva Y (2020) Clostridium botulinum neurotoxin A inhibits DBTRG glioblastoma cell proliferation and TRPV1 channel signaling pathways. J Cell Neurosci Oxid Stress 12(1):903–913. https://doi.org/10.37212/jcnos.809635

    Article  Google Scholar 

  33. Daldal H, Nazıroğlu M (2022) Selenium and resveratrol attenuated diabetes mellitus-mediated oxidative retinopathy and apoptosis via the modulation of TRPM2 activity in mice. Biol Trace Elem Res 200(5):2283–2297. https://doi.org/10.1007/s12011-022-03203-9

    Article  CAS  PubMed  Google Scholar 

  34. Placer ZA, Cushman L, Johnson BC (1966) Estimation of products of lipid peroxidation (malonyl dialdehyde) in biological fluids. Analytical Biochem 16:359–364

    Article  CAS  Google Scholar 

  35. Sedlak J, Lindsay RHC (1968) Estimation of total, protein bound and non-protein sulfhydryl groups in tissue with Ellmann’ s reagent. Analytical Biochem 25:192–205

    Article  CAS  Google Scholar 

  36. Lawrence RA, Burk RF (1976) Glutathione peroxidase activity in selenium-deficient rat liver. Biochem Biophys Res Com 71:952–958

    Article  CAS  PubMed  Google Scholar 

  37. Nazıroğlu M, Butterworth PJ, Sonmez TT (2011) Dietary vitamin C and E modulates antioxidant levels in blood, brain, liver, muscle, and testes in diabetic aged rats. Int J Vitam Nutr Res 81(6):347–57. https://doi.org/10.1024/0300-9831/a000083

    Article  CAS  PubMed  Google Scholar 

  38. Naziroğlu M, Butterworth PJ (2005) Protective effects of moderate exercise with dietary vitamin C and E on blood antioxidative defense mechanism in rats with streptozotocin-induced diabetes. Can J Appl Physiol 30(2):172–185. https://doi.org/10.1139/h05-113

    Article  PubMed  Google Scholar 

  39. Desai ID (1980) Vitamin E analysis methods for animal tissues. Methods Enzymol 105:138–147

    Article  Google Scholar 

  40. Suzuki J, Katoh N (1990) A simple and cheap method for measuring vitamin A in cattle using only a spectrophotometer. Jpn J Vet Sci 52:1282–1284

    Article  Google Scholar 

  41. Kandasamy R, Morgan MM (2021) “Reinventing the wheel” to advance the development of pain therapeutics. Behav Pharmacol 32(2&3):142–152. https://doi.org/10.1097/FBP.0000000000000596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yüksel E, Nazıroğlu M, Şahin M, Çiğ B (2017) Involvement of TRPM2 and TRPV1 channels on hyperalgesia, apoptosis and oxidative stress in rat fibromyalgia model: Protective role of selenium. Sci Rep 7(1):17543. https://doi.org/10.1038/s41598-017-17715-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Xu HL, Liu MD, Yuan XH, Liu CX (2018) Suppression of cortical TRPM7 protein attenuates oxidative damage after traumatic brain injury via Akt/endothelial nitric oxide synthase pathway. Neurochem Int 112:197–205. https://doi.org/10.1016/j.neuint.2017.07.010

    Article  CAS  PubMed  Google Scholar 

  44. Kilinc M, Guven MA, Ezer M, Ertas IE, Coskun A (2008) Evaluation of serum selenium levels in Turkish women with gestational diabetes mellitus, glucose intolerants, and normal controls. Biol Trace Elem Res 123(1–3):35–40. https://doi.org/10.1007/s12011-007-8087-2

    Article  CAS  PubMed  Google Scholar 

  45. Asadi S, Gholami MS, Siassi F, Qorbani M, Khamoshian K, Sotoudeh G (2019) Nano curcumin supplementation reduced the severity of diabetic sensorimotor polyneuropathy in patients with type 2 diabetes mellitus: A randomized double-blind placebo- controlled clinical trial. Complement Ther Med 43:253–260. https://doi.org/10.1016/j.ctim.2019.02.014

    Article  PubMed  Google Scholar 

  46. Zhang X, Guan Z, Wang X et al (2020) Curcumin Alleviates Oxaliplatin-Induced Peripheral Neuropathic Pain through Inhibiting Oxidative Stress-Mediated Activation of NF-κB and Mitigating Inflammation. Biol Pharm Bull 43(2):348–355. https://doi.org/10.1248/bpb.b19-00862

    Article  CAS  PubMed  Google Scholar 

  47. Al Moundhri MS, Al-Salam S, Al Mahrouqee A, Beegam S, Ali BH (2013) The effect of curcumin on oxaliplatin and cisplatin neurotoxicity in rats: some behavioral, biochemical, and histopathological studies. J Med Toxicol 9(1):25–33. https://doi.org/10.1007/s13181-012-0239-x

    Article  CAS  PubMed  Google Scholar 

  48. Uchida K, Dezaki K, Damdindorj B, Inada H, Shiuchi T, Mori Y, Yada T, Minokoshi Y, Tominaga M (2011) Lack of TRPM2 impaired insulin secretion and glucose metabolisms in mice. Diabetes 60(1):119–126. https://doi.org/10.2337/db10-0276

    Article  CAS  PubMed  Google Scholar 

  49. Sima AA, Zhang W (2014) Mechanisms of diabetic neuropathy: axon dysfunction. Handb Clin Neurol 126:429–442. https://doi.org/10.1016/B978-0-444-53480-4.00031-X

    Article  PubMed  Google Scholar 

  50. Liu W, Liang XC, Shi Y (2020) Effects of hirudin on high glucose-induced oxidative stress and inflammatory pathway in rat dorsal root ganglion neurons. Chin J Integr Med 26(3):197–204. https://doi.org/10.1007/s11655-019-2712-8

    Article  CAS  PubMed  Google Scholar 

  51. Pinton P, Giorgi C, Siviero R, Zecchini E, Rizzuto R (2008) Calcium and apoptosis: ER-mitochondria Ca2+ transfer in the control of apoptosis. Oncogene 27(50):6407–6418. https://doi.org/10.1038/onc.2008.308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhang P, Li W, Liu Y, Gao Y, Abumaria N (2022) Neuroprotective Effects of TRPM7 Deletion in Parvalbumin GABAergic vs. Glutamatergic Neurons following Ischemia. Cells 11(7):1178. https://doi.org/10.3390/cells11071178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lee JY, Shin TJ, Choi JM et al (2013) Antinociceptive curcuminoid, KMS4034, effects on inflammatory and neuropathic pain likely via modulating TRPV1 in mice. Br J Anaesth 111(4):667–672. https://doi.org/10.1093/bja/aet176

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank technicians Fatih Şahin and Muhammet Şahin (BSN Health, Isparta, Turkey) for hel** patch-clamp and plate reader analyses.

Funding

The current study was financially supported by BSN Health, Analyses, Innov., Consult., Org., Agricul., Industry Ltd., Isparta, Turkey. (The number of the project is 2021–09. The owner of the project is Dr. Bünyamin Aydın.)

Author information

Authors and Affiliations

Authors

Contributions

MN reviewed the current literature. MN and BA designed the project. BA performed animal care and plate reader tests in 7th International Brain Research School, 27 June and 3 July 2022, Isparta, Turkey (http://2022.brs.org.tr/). MN conceptualized this perspective piece, reviewed, and revised the manuscript. Laser confocal microscope analyses were performed in the DRG neurons by MN.

Corresponding author

Correspondence to Mustafa Nazıroğlu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics Approval

This article does not contain human participants and human samples. All experimental procedures were reviewed and approved by Experimental Animal Ethics Committee of Burdur Mehmet Akif University (MAKU) Local Animal Care Committee in accordance with the guidelines set by the MAKU (Meeting number: 96. Decision number: 839. Owner: Dr. Bünyamin Aydın). The authors have no ethical conflicts to disclose.

Consent to Participate

MN reviewed the current literature. MN and BA designed the project. BA performed animal care and plate reader tests. MN conceptualized this perspective piece, reviewed, and revised the manuscript. All authors approved the final manuscript as submitted.

Consent for Publication

All authors approved the final manuscript as submitted.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aydın, B., Nazıroğlu, M. Involvement of TRPM7 Channel on the Induction of Diabetic Neuropathic Pain in Mice: Protective Role of Selenium and Curcumin. Biol Trace Elem Res 201, 2377–2395 (2023). https://doi.org/10.1007/s12011-022-03518-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-022-03518-7

Keywords

Navigation