Log in

Mercury and Cadmium Concentrations in Muscle Tissue of the Blue Shark (Prionace glauca) in the Central Eastern Pacific Ocean

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Blue sharks (Prionace glauca) are an important resource in Ecuador’s fisheries; however, biological and ecological information of this species in the area is scarce. The goal of this study was to determine Hg and Cd concentration levels in muscle tissue, as well as its relationship with size, sex, and sexual maturity stages. A total of 80 specimens (34 females and 46 males) collected from the Ecuadorian longline fishing fleet between June and December 2012 were examined. Sizes for females ranged from 97 to 280 cm total length, with values of Hg between 0.20 to 2.38 mg kg−1 wet weight ( = 0.71, ± 0.61) and values of Cd between 0.01 and 0.12 mg kg−1 ( = 0.04, ± 0.02). Sizes for males ranged from 137 to 290 cm TL with values of Hg between 0.17 and 2.94 mg kg−1 ( = 0.81, ± 0.68) and Cd concentrations between 0.01 and 0.12 mg kg−1 ( = 0.04, ± 0.03). A Spearman’s rank correlation showed a medium positive association between TL and Hg concentrations (ρ = 0.66; p < 0.05), but there was no correlation between TL and Cd concentrations (ρ = 0.00, p < 0.05). Of the analyzed sharks, 46% and 20% had Hg and Cd concentrations, respectively, greater than the limit established by authorities for fishes consumed by humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Not applicable for that section.

Code Availability

Not applicable for that section.

References

  1. Markaida U, Sosa-Nishizaki O (2010) Food and feeding habits of the blue shark Prionace glauca caught off Ensenada, Baja California, Mexico, with a review on its feeding. J Mar Biol Assoc UK 90(5):977–994. https://doi.org/10.1017/S0025315409991597

    Article  Google Scholar 

  2. Griffin E, Miller KL, Freitas B, Hirshfield M (2008) Predators as prey: why healthy oceans need sharks. Oceana, Washington

    Google Scholar 

  3. FAO (2021) Prionace glauca (Linnaeus 1758). http://www.fao.org/fishery/species/2018/fr Accessed 31 August 2021.

  4. Córdova-Zavaleta F, Mendo J, Briones-Hernández SA, Acuña-Perales N, González-Pestana A, Alfaro-Shigueto J, Mangel JC (2018) Food habits of the blue shark, Prionace glauca (Linnaeus, 1758), in waters off northern Peru. Fish Bull 116(3–4):310–322. https://doi.org/10.7755/FB.116.3-4.9

    Article  Google Scholar 

  5. Martínez-Ortiz J, García-Domínguez M (2013) Guía de campo de condrictios del Ecuador: quimeras, tiburones y rayas/ Chondrichtyes of Ecuador Field guide. Chimaeras, sharks and rays. Ministerio de Agricultura, Ganadería, Acuicultura y Pesca (MAGAP), Viceministerio de Acuicultura y Pesca (VAP), Subsecretaría de Recursos Pesqueros (SRP), Manta.

  6. Instituto Nacional de Pesca, INP (2010) Desembarques de tiburones. http://www.inp.gob.ec/irba/estadisticas/Desembarques%20de%20Tiburones%202000%20-%202009.pdf. Accessed 10 March 2018.

  7. Subsecretaría de Recursos Pesqueros (2012) Peces pelágicos grandes y tiburones. SRP, VAP, MAGAP. http://tiburon.viceministerioap.gob.ec/tiburon-ecuador/estadisticas-globales-por-mes-todos-los-puertos264.html.

  8. Storelli MM, Giacominelli-Stuffler R, Storelli A, Marcotrigiano GO (2005) Accumulation of mercury, cadmium, lead and arsenic in swordfish and bluefin tuna from the Mediterranean Sea: a comparative study. Mar Pollut Bull 50(9):1004–1007. https://doi.org/10.1016/j.marpolbul.2005.06.041

    Article  CAS  PubMed  Google Scholar 

  9. Falcó G, Llobet J, Bocio A, Domingo J (2006) Daily intake of arsenic, cadmium, mercury and lead by consumption of edible marine species. J Agric Food Chem 54(10):6106–6112. https://doi.org/10.1021/jf0610110

    Article  CAS  PubMed  Google Scholar 

  10. Martí-Cid R, Bocio A, Llobet JM, Domingo JL (2007) Intake of chemical contaminants through fish and seafood consumption by children of Catalonia, Spain: health risks. Food Chem Toxicol 45(10):1968–1974. https://doi.org/10.1016/j.fct.2007.04.014

    Article  CAS  PubMed  Google Scholar 

  11. Storelli MM (2008) Potential human health risks from metals (Hg, Cd and Pb) and polychlorinated biphenyls (PCBs) via seafood consumption: estimation of target hazard quotients (THQs) and toxic equivalents (TEQs). Food Chem Toxicol 46(8):2782–2788. https://doi.org/10.1016/j.fct.2008.05.011

    Article  CAS  PubMed  Google Scholar 

  12. Branco V, Vale C, Canário J, Neves dos Santos M (2007) Mercury and selenium in blue shark (Prionace glauca L. 1758) and swordfish (**phias gladius L. 1758) from two areas of the Atlantic Ocean. Environ Pollut 150(3):373–380. https://doi.org/10.1016/j.envpol.2007.01.040

    Article  CAS  PubMed  Google Scholar 

  13. Maz-Courrau A, López-Vera C, Galván-Magaña F, Escobar-Sánchez O, Rosíles-Martínez R, Sanjuán-Muñoz, (2012) Bioaccumulation and biomagnification of total mercury in four exploited shark species in the Baja California Peninsula. Mexico Bull Environ Contam Toxicol 88(2):129–134. https://doi.org/10.1007/s00128-011-0499-1

    Article  CAS  PubMed  Google Scholar 

  14. Storelli MM, Giacominelli-Stuffler R, Marcotrigiano GO (2002) Mercury accumulation and speciation in muscle tissue of different species of sharks from Mediterranean Sea. Italy Bull Environ Contam Toxicol 68(2):201–210. https://doi.org/10.1007/s001280239

    Article  CAS  PubMed  Google Scholar 

  15. Rojas E, Herrera LA, Poirier LA, Ostrosky-Wegman P (1999) Are metals dietary carcinogens? Mutat Res 443(1–2):157–181. https://doi.org/10.1016/s1383-5742(99)00018-6

    Article  CAS  PubMed  Google Scholar 

  16. Ordiano-Flores A, Galván-Magaña F, Sánchez-González A, Páez-Osuna F (2020) Evidence for interrupted biomagnification of cadmium in billfish food chain based on stable carbon and nitrogen isotopes from southwestern of Gulf of California. Biol Trace Elem Res 195(1):215–225. https://doi.org/10.1007/s12011-019-01832-1

    Article  CAS  PubMed  Google Scholar 

  17. Siderman CJ (1989) Principal diseases of marine fish and shellfish. Volume 1, 2nd edition. Academic Press, San Diego

  18. Davenport SR (1995) Mercury in blue sharks and deepwater dogfish from around Tasmania. Aust Fish 54 (3): 20–22. http://hdl.handle.net/102.100.100/234782?index=1

  19. García-Hernández J, Cadena-Cárdenas L, Betancourt-Lozano M, García-De la Parra LM, García-Rico L, Márquez-Farías JF (2007) Total mercury content found in edible tissues of top predator fish from the Gulf of California. Mexico Toxicol Environ Chem 89(3):507–522. https://doi.org/10.1080/02772240601165594

    Article  CAS  Google Scholar 

  20. Escobar-Sánchez O, Galván-Magaña F, Rosíles-Martínez R (2011) Biomagnification of mercury and selenium in blue shark Prionace glauca from the Pacific Ocean off México. Biol Trace Elem Res 144(1–3):550–559

    Article  Google Scholar 

  21. Barrera-García AM (2013) Elementos trazas e indicadores de estrés oxidativo en el tiburón azul (Prionace glauca) de la costa occidental de Baja California Sur, México. Ph.D. thesis. Centro Investigaciones Biológicas del Noroeste (CIBNOR), La Paz.

  22. Barrera-García AM, O’Hara T, Galván-Magaña F, Méndez-Rodríguez LC, Castellini JM, Zenteno-Savín T (2013) Trace elements and oxidative stress indicators in the liver and kidney of the blue shark (Prionace glauca). Comp Biochem Physiol A Mol Integr Physiol 165(4):483–490. https://doi.org/10.1016/j.cbpa.2013.01.024

    Article  CAS  PubMed  Google Scholar 

  23. López SA, Abarca NL, Meléndez R (2013) Heavy metal concentrations of two highly migratory sharks (Prionace glauca and Isurus oxyrinchus) in the southeastern Pacific waters: comments on public health and conservation. Trop Conserv Sci 6(1):126–137. https://doi.org/10.1177/194008291300600103

    Article  Google Scholar 

  24. Reátegui-Quispe A, Pariona-Velarde D (2019) Determinación de plomo, cadmio, mercurio y Bases Volátiles Nitrogenadas Totales (NBVT) en el músculo de tiburón azul Prionace glauca procedente de la zona sur del Perú. Rev Biol Mar Oceanogr 54(3):336–342. https://doi.org/10.22370/rbmo.2019.54.3.2029

    Article  Google Scholar 

  25. Álvaro-Berlanga S, Calatayud-Pavía CE, Cruz-Ramírez A, Soto-Jiménez MF, Liñán-Cabello MA (2021) Trace elements in muscle tissue of three commercial shark species: Prionace glauca, Carcharhinus falciformis, and Alopias pelagicus off the Manzanillo, Colima coast. Mexico Environ Sci Poll Res 28(18):22679–22692. https://doi.org/10.1007/s11356-020-12234-5

    Article  CAS  Google Scholar 

  26. Stevens JD, Brown BE (1974) Occurrence of heavy metals in the blue shark Prionace glauca and selected pelagic in the N. E Atlantic Ocean Mar Biol 26:287–293. https://doi.org/10.1007/BF00391512

    Article  CAS  Google Scholar 

  27. Vas P (1991) Trace metal levels in sharks from British and Atlantic waters. Mar Poll Bull 22(2):67–72. https://doi.org/10.1016/0025-326X(91)90138-I

    Article  CAS  Google Scholar 

  28. Morales-Aizpurúa IC, Tenuta-Filho A, Sakuma AM, Zenebon O (1999) Mercúrio total em cação comercializado em São Paulo - SP. Brasil Cienc Technol Aliment 19(3):429–432. https://doi.org/10.1590/S0101-20611999000300024

    Article  Google Scholar 

  29. Lemos-Chicourel E, Sakuma AM, Zenebon O, Tenuta-Filho A (2001) Inefficacy of cooking methods on mercury reduction from shark. Arch Latinoam Nutr 51(3):288–292

    Google Scholar 

  30. Storelli MM, Giacominelli-Stuffer R, Marcotrigiano GO (2001) Total mercury and methylmercury in tuna fish and sharks from the South Adriatic Sea. Ital J Food Sci 13(1):101–106

    CAS  Google Scholar 

  31. Branco V, Canário J, Vale C, Raimundo J, Reis C (2004) Total and organic mercury concentrations in muscle tissue of the blue shark (Prionace glauca L. 1758) from the Northeast Atlantic. Mar Pollut Bull 49(9–10):871–874. https://doi.org/10.1016/j.marpolbul.2004.09.002

    Article  CAS  PubMed  Google Scholar 

  32. Mársico ET, Machado MES, Knoff M, Sao Clemente SC (2007) Total mercury in sharks along the southern Brazilian Coast. Arq Bras Med Vet Zootec 59(6):1593–1596. https://doi.org/10.1590/S0102-09352007000600039

    Article  Google Scholar 

  33. Dias ACI, Guimaraes JRD, Malm O, Costa PAS (2008) Total mercury in muscle of the blue shark Prionace glauca (Linnaeus, 1758) and swordfish **phias gladius (Linnaeus, 1758) from the South-Southeast coast of Brazil and the implication for public health. Cad Saúde Pública 24(9):2063–2070. https://doi.org/10.1590/S0102-311X2008000900012

    Article  PubMed  Google Scholar 

  34. Bajčan D, Árvay J, Musilová J (2013) Evaluation of total mercury content in muscle tissue of marine fish and animals. J Microbiol Biotechnol Food Sci 2(1):1692–1698

    Google Scholar 

  35. De Carvalho GGA, Degaspari IA, Branco V, Canário J, De Amorim AF, Kennedy VH, Ferreira JR (2014) Assessment of total and organic mercury levels in blue sharks (Prionace glauca) from the south and southeastern Brazilian coast. Biol Trace Elem Res 159(1–3):128–134. https://doi.org/10.1007/s12011-014-9995-6

    Article  CAS  PubMed  Google Scholar 

  36. Matos J, Lourenço HM, Brito P, Maulvault AL, Martins LL, Afonso C Influence of bioaccessibility of total mercury, methyl-mercury and selenium on the risk/benefit associated to the consumption of raw and cooked blue shark (Prionace glauca). Environ Res 2015 143 (Part B): 123 129. https://doi.org/10.1016/j.envres.2015.09.015

  37. Biton-Porsmoguer S, Dekeyser I, Bǎnaru D, Bouchoucha M, Marco-Miralles F (2016) Using body mass index (BMI) to estimate mercury contamination of the blue shark (Prionaceglauca) and the shortfin mako (Isurusoxyrinchus). Cybium 40(4):319–322. https://doi.org/10.26028/cybium/2016-404-005

    Article  Google Scholar 

  38. Biton-Porsmoguer S, Bǎnaru D, Boudouresque CF, Dekeyser I, Bouchoucha M, Marco-Miralles F, Lebreton B, Guillou G, Harmelin-Vivien M (2018) Mercury in blue shark (Prionace glauca) and shortfin mako (Isurus oxyrinchus) from north-eastern Atlantic: implication for fishery management. Mar Pollut Bull 127:131–138. https://doi.org/10.1016/j.marpolbul.2017.12.006

    Article  CAS  PubMed  Google Scholar 

  39. Hauser-Davis RA, Rocha RCC, Saint’Pierre TD, Adams DH, (2021) Metal concentrations and metallothionein metal detoxification in blue sharks, Prionace glauca L. from the Western North Atlantic Ocean. J Trace Elem Med Biol 68:126813. https://doi.org/10.1016/j.jtemb.2021.126813

    Article  CAS  PubMed  Google Scholar 

  40. Clark E, Von Schmidt K (1965) Sharks of the central gulf coast of Florida. Bull Mar Sci 15(1):13–83

    Google Scholar 

  41. Conrath CL (2005) Reproductive biology. In: Musick JA, Bonfil R (eds.) Management techniques for elasmobranch fisheries. FAO Fisheries Technical Paper. FAO, Rome, pp 133–164

  42. Unión Europea (2006) Reglamento (CE) no 1881/2006 de la Comisión. Diario Oficial de la Unión Europea, Bruselas.

  43. Tigrero W (2012) Esfuerzo pesquero y aspectos de la biología reproductiva del tiburón aguado Prionace glauca, (Linnaeus, 1736), desembarcado en el puerto de Santa Rosa, durante el período de diciembre 2010-noviembre 2011. B.Sc. Thesis. Universidad Estatal Península de Santa Elena (UPSE), La Libertad.

  44. Join FAO/WHO Expert Committee on Food Additives, JECFA Sixty-first meeting of the JECFA. Annex 4. FAO, Rome (2003)

  45. Mohammed A, Mohammed T (2017) Mercury, arsenic, cadmium and lead in two commercial shark species (Sphyrna lewini and Carcharinus pososus) in Trinidad and Tobago. Mar Pollut Bull 119(2):214–218. https://doi.org/10.1016/j.marpolbul.2017.04.025

    Article  CAS  PubMed  Google Scholar 

  46. Viera C, Morais S, Ramos S, Delerue-Matos C, Oliveira MBPP (2011) Mercury, cadmium, lead and arsenic levels in three pelagic fish from the Atlantic Ocean: intra- and inter-specific variability and human health risk for consumption. Food Chem Toxicol 49(4):923–932. https://doi.org/10.1016/j.fct.2010.12.016

    Article  CAS  Google Scholar 

  47. Man YB, Wu SC, Wong MH (2014) Shark fin, a symbol of wealth and good fortune may pose health risks: the case of mercury. Environ Geochem Health 36(3):1015–1027. https://doi.org/10.1007/s10653-014-9598-3

    Article  CAS  PubMed  Google Scholar 

  48. Instituto Ecuatoriano de Normalización, INEN (2013) Pescado fresco refrigerado o congelado, requisitos. Norma técnica ecuatoriana NTE INEN 183 Primera revisión 2013–01. INEN, Quito.

  49. Hernández-Aguilar SB (2008) Espectro trófico del tibúron azul Prionace glauca (Linnaeus, 1958) en la costa occidental de Baja California Sur, México. M.Sc. thesis. Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas de México, La Paz.

  50. Rand GM, Wella PG, McCarthy LS (1995) Introduction to aquatic ecology. In: Rand GM (ed) Fundamentals of aquatic toxicology. Taylor and Francis, London, pp 3–53

    Google Scholar 

  51. Gomes FA, Vieira FV, Veiga De Carvalho CE, Teixeira LRP, Santana Da Silva FM (2004) Total mercury in the night shark, Carcharhinus signatus, in the western equatorial Atlantic Ocean. Braz Arch Biol Technol 47(4):1–9. https://doi.org/10.1590/S1516-89132004000400016

    Article  Google Scholar 

  52. Amlund H, Lundebye AK, Berntssen MHG (2007) Accumulation and elimination of methylmercury in Atlantic cod (Gadus morhua L) following dietary exposure. Aquat Toxicol 83(4):323–330. https://doi.org/10.1016/j.aquatox.2007.05.008

    Article  CAS  PubMed  Google Scholar 

  53. Dang F, Wang WX (2012) Why mercury concentration increases with fish size? Biokinetic explanation. Environ Pollut 163:192–198. https://doi.org/10.1016/j.envpol.2011.12.026

    Article  CAS  PubMed  Google Scholar 

  54. Cabana G, Rasmussen JB (1994) Modelling food chain structure and contaminant bioaccumulation using stable nitrogen isotopes. Nature 372:255–327. https://doi.org/10.1038/372255a0

    Article  CAS  Google Scholar 

  55. Kidd KA, Hesslein RH, Fudge RJP, Hallard KA (1995) The influence of trophic level as measured by δ15N on mercury concentrations in freshwater organisms. Water Air Soil Pollut 80:1011–1015. https://doi.org/10.1007/BF01189756

    Article  CAS  Google Scholar 

  56. United Nations Environmental Programme, UNEP (2013) Global mercury assessment 2013: sources, emissions, releases and environmental transport. UNEP, Geneva

    Google Scholar 

  57. Hylander LD (2001) Global mercury pollution and its expected decrease after a mercury trade ban. Water Air Soil Pollut 125(1):331–344. https://doi.org/10.1023/A:1005231017807

    Article  CAS  Google Scholar 

  58. Sippel T, Wraith J, Kohin S, Taylor V, Holdsworth J, Taguchi M, Matsunaga H, Yokawa K (2011) A summary of blue shark (Prionace glauca) and shortfin mako shark (Isurus oxyrinchus) tagging data available from the North and Southwest Pacific Ocean. Working document submitted to the Shark Working Group Workshop. NOAA Southwest Fisheries Science Center, La Jolla.

  59. Shipley ON, Lee CS, Fisher NS, Sternlicht JK, Kattan S, Staaterman ER, Hammerschlag N, Gallagher AJ (2021) Metal concentrations in coastal sharks from The Bahamas with a focus on the Caribbean Reef shark. Sci Rep 11:218. https://doi.org/10.1038/s41598-020-79973-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Matulik AG, Kerstetter DW, Hammerschlag N, Divoll T, Hammerschmidt CR, Evers DC (2017) Bioaccumulation and biomagnification of mercury and methylmercury in four sympatric coastal sharks in a protected subtropical lagoon. Mar Poll Bull 116(1–2):357–364. https://doi.org/10.1016/j.marpolbul.2017.01.033

    Article  CAS  Google Scholar 

  61. Maurice L, Le Croizier G, Morales G, Carpintero N, Guayasamin JM, Sonke J, Páez-Rosas D, Point D, Bustos W, Ochoa-Herrera V (2021) Concentrations and stable isotopes of mercury in sharks of the Galapagos Marine Reserve: human health concerns and feeding patterns. Ecotoxicol Environ Saf 215:112122. https://doi.org/10.1016/j.ecoenv.2021.112122

    Article  CAS  PubMed  Google Scholar 

  62. Gelsleichter J, Sparkman G, Howey LA, Brooks EJ, Shipley ON (2020) Elevated accumulation of the toxic metal mercury in the critically endangered oceanic whitetip shark Carcharhinus longimanus from the northwestern Atlantic Ocean. Endang Species Res 43:267–279. https://doi.org/10.3354/esr01068

    Article  Google Scholar 

  63. Terrazas-López R, Arreola-Mendoza L, Galván-Magaña F, Anguiano-Zamora M, Sujitha SB, Jonathan MP (2016) Cadmium concentration in liver and muscle of silky shark (Carcharhinus falciformis) in the tip of Baja California south. México Mar Pollut Bull 107(1):389–392. https://doi.org/10.1016/j.marpolbul.2016.03.035

    Article  CAS  PubMed  Google Scholar 

  64. Alves LM, Nunes M, Marchand P, Le Bizec B, Mendes S, Correia JP, Lemos MF, Novais SC (2016) Blue sharks (Prionace glauca) as bioindicators of pollution and health in the Atlantic Ocean: contamination levels and biochemical stress responses. Sci Total Environ 563–564:282–292. https://doi.org/10.1016/j.scitotenv.2016.04.085

    Article  CAS  PubMed  Google Scholar 

  65. Suryaningsih W, Supriyono HB, Kurnianto MF (2020) Improving the quality of smoked shark meat with ozone water technique. IOP conference series: Earth and Environmental Science 411:012048. https://doi.org/10.1088/1755-1315/411/1/012048

    Article  Google Scholar 

  66. Tiktak GP, Butcher D, Lawrence PJ, Norrey J, Bradley L, Shaw K, Preziosi R, Megson D (2020) Are concentrations of pollutants in sharks, rays and skates (Elasmobranchii) a cause for concern? A systematic review Mar Poll Bull 160:111701. https://doi.org/10.1016/j.marpolbul.2020.111701

    Article  CAS  Google Scholar 

  67. Merly L, Lange L, Meÿer M, Hewitt AM, Koen P, Fischer C, Muller J, Schilack V, Wentzel M, Hammerschlag N (2019) Blood plasma levels of heavy metals and trace elements in white sharks (Carcharodon carcharias) and potential health consequences. Mar Pollut Bull 142:85–92. https://doi.org/10.1016/j.marpolbul.2019.03.018

    Article  CAS  PubMed  Google Scholar 

  68. Cullen WR, Reimer KJ (1989) Arsenic speciation in the environment. Chem Rev 89(4):713–764. https://doi.org/10.1021/cr00094a002

    Article  CAS  Google Scholar 

  69. Storelli MM, Marcotrigiano GO (2000) Total, organic and inorganic arsenic and mercury in crustaceans (Squilla mantis). Ital J Food Sci 12(3):365–370. https://doi.org/10.4315/0362-028X-64.11.1858

    Article  CAS  Google Scholar 

  70. Bustamante P, Caurant F, Fowler S, Miramand P (1998) Cephalopods as a vector for the transfer of cadmium to top marine predators in the North-east Atlantic Ocean. Sci Total Environ 220(1):71–80

    Article  CAS  Google Scholar 

  71. Storelli MM, Marcotrigiano GO (1999) Cadmium and total mercury in some cephalopods from the South Adriatic Sea (Italy). Food Addit Contam 16(6):261–265. https://doi.org/10.1080/026520399284028

    Article  CAS  PubMed  Google Scholar 

  72. Méndez L, Acosta B, Álvarez-Castañeda ST, Lechuga-Devéze CH (1998) Trace metal distribution along the southern coast of Bahía de La Paz (Gulf of California). Mexico Bull Environ Contam Toxicol 61(5):616–622. https://doi.org/10.1007/s001289900805

    Article  PubMed  Google Scholar 

  73. Segovia-Zavala JA, Delgadillo-Hinojosa F, Vidal-Talamantes, Muñoz-Barbosa A, Gutiérrez-Galindo EA. Mytilus californianus transplanted as upwelling bioindicators to two areas off Baja California, Mexico. Cienc Mar 2003 29 (4B): 665–675. https://doi.org/10.7773/cm.v29i42.185

  74. Libes SM Introduction to marine biogeochemistry 2009. 2nd ed. Academic Press San Diego.

  75. Segovia-Zavala JA, Delgadillo-Hinojosa F, Álvarez-Borrego S (1998) Cadmium in the coastal upwelling area adjacent to the California-Mexico border. Estuar Coast Shelf Sci 46(4):475–481. https://doi.org/10.1006/ecss.1997.0296

    Article  CAS  Google Scholar 

  76. Dent F, Clarke S. State of the global market for shark products. FAO Fisheries and Aquaculture Technical Paper 2015 No. 590. FAO, Rome.

  77. Dell’Apa A, Chad Smith M, Kaneshiro-Pineiro MY (2014) The influence of culture on the international management of shark finning. Environ Management 54(2):151–161. https://doi.org/10.1007/s00267-014-0291-1

    Article  Google Scholar 

  78. López de la Lama R, De la Puente S, Riveros JC (2018) Attitudes and misconceptions towards sharks and shark meat consumption along the Peruvian coast. PLoS ONE 13(8):e0202971. https://doi.org/10.1371/journal.pone.0202971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Barbosa-Filho MLV, Hauser-Davis RA, Siciliano S, Dias TLP, Alves RRN (2019) Costa-Neto EM Historical shark meat consumption and trade trends in a global richness hotspot. Ethnobiol Lett 10(1):97–103. https://doi.org/10.14237/ebl.10.1.2019.1560

    Article  Google Scholar 

  80. Harris HH, Pickering IJ (2003) George GNThe chemical form of mercury in fish. Science 301(5637):1203. https://doi.org/10.1126/science.1085941

    Article  CAS  PubMed  Google Scholar 

  81. Raymond LJ (2004) Ralston NVC Mercury: selenium interactions and health implications. Neurotoxicology 81:294–299. https://doi.org/10.1016/j.neuro.2020.09.020

    Article  CAS  Google Scholar 

  82. Health Canada Human health risk assessment of mercury in fish and health benefits of fish consumption. Minister of Health, Ottawa 2007.

Download references

Acknowledgements

The authors wish to thank Andrea Cucalón-Hidalgo for her help and cooperation in the sample collection. FGM received support from the Estímulos al Desempeño de los Investigadores (EDI), and the Comisión de Operación y Fomento de Actividades Académicas del Instituto Politécnico Nacional (COFAA-IPN). This study is dedicated to the memory of Dr. Lucia Solórzano Constantine.

Funding

This project was funded by the Universidad de Especialidades Espíritu Santo (UEES) in Ecuador.

Author information

Authors and Affiliations

Authors

Contributions

Marcos Calle-Morán: conceptualization, methodology, software, validation, formal analysis, investigation, resources, data curation, writing the original draft, writing and review and editing, visualization, and supervision; Rubén Castro-Rendón: conceptualization, methodology, software, validation, formal analysis, investigation, resources, data curation, writing the original draft, writing and review and editing, visualization, supervision, and funding acquisition; Isabel García-Arévalo: conceptualization, methodology, software, validation, formal analysis, investigation, resources, data curation, writing the original draft, writing and review and editing, visualization, supervision, project administration, and funding acquisition; Alfredo Ordiano-Flores: conceptualization, methodology, software, validation, formal analysis, investigation, resources, data curation, writing the original draft, writing and review and editing, visualization, and supervision; Felipe Galván-Magaña: conceptualization, methodology, software, validation, formal analysis, investigation, resources, writing the original draft, writing and review and editing, visualization, and supervision.

Corresponding author

Correspondence to Felipe Galván-Magaña.

Ethics declarations

Ethics Approval

All experiments have been conducted following the guidelines of the Institutional Animal Ethics Committee from Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas. However, the unregulated shark species used in this study was collected for commercial sale as food. Therefore, the use of this species in research does not require ethical clearance.

Consent to Participate

Not applicable for that section.

Consent for Publication

Not applicable for that section.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castro-Rendón, R.D., Calle-Morán, M.D., García-Arévalo, I. et al. Mercury and Cadmium Concentrations in Muscle Tissue of the Blue Shark (Prionace glauca) in the Central Eastern Pacific Ocean. Biol Trace Elem Res 200, 3400–3411 (2022). https://doi.org/10.1007/s12011-021-02932-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-021-02932-7

Keywords

Navigation