Log in

Galaxaura elongata Extract (GE) Modulates Vanadyl Sulfate-Induced Renal Damage via Regulating TGF-β/Smads and Nrf2/NF-κB Pathways

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Nephrotoxicity becomes a provoked problem as the kidneys are the target of many chemotherapies. For this reason, we aimed to study the protective effect of Galaxaura elongata extract (GE) against the vanadyl sulfate (Van) induced nephrotoxicity in rats. Forty Wistar albino rats (male) were divided into four groups (n = 10) as follows: control group: rats received 0.5% carboxymethyl cellulose (CMC). Galaxa group: rats received GE at a dose (100 mg/kg orally) daily for 6 weeks. Van group: rats injected with Van at a dose (50 mg/kg i.p.) once weekly for 6 successive weeks. Galaxa + Van group: rats received GE at a dose (100 mg/kg orally) daily for 6 weeks concurrently with Van at a dose (50 mg/kg i.p.) for 6 weeks. Our results showed that Van significantly raised urea and creatinine serum levels as compared to the control group as well as disordered renal oxidative/antioxidant redox. Administration of GE with Van alleviated the adverse impact of Van over the kidney tissues. Furthermore, GE administration in Galaxa + Van group downregulates angiotensin-converting enzyme (ACE1) mRNA expression, angiotensin II (Ang II) concentration, transforming growth factor β (TGF-β) mRNA expression and protein concentration and Nuclear factor κB (NF-κB) mRNA expression as compared to Van group. Also, GE administration caused a noticeable upregulation of Nrf2 and heme oxygenase-1 (HO-1) expressions with a consequent decrease of DNA fragmentation % compared to Van group. The results of the current study show that simultaneous treatment with GE can alleviate nephrotoxicity caused by Van in diabetic rats. The GE treatment of the Van treated animals restored altered renal oxidative/antioxidant redox values towards normal and lessened fibrosis. These results are consistent with these effects being caused by interactions with the TGF-B/Smads and Nrf2/NF-κB signaling pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Caswell LR (2003) Andrés del Río, Alexander Von Humboldt, and the twice-discovered element. Bull Hist Chem 28:35

    CAS  Google Scholar 

  2. Willsky G, Goldfine A, Kostyniak P, McNeill J, Yang L, Khan H, Crans D (2001) Effect of vanadium (IV) compounds in the treatment of diabetes: in vivo and in vitro studies with vanadyl sulfate and bis (maltolato) oxovandium (IV). J Inorg Biochem 85:33–42

    Article  CAS  PubMed  Google Scholar 

  3. Shah SZH, Naveed AK, Rashid A (2016) Nephrotoxicity by oral vanadyl sulphate in rats. Pak Armed Forces Med J 66:386–389

    Google Scholar 

  4. Tripathi D, Mani V, Pal RP (2018) Vanadium in biosphere and its role in biological processes. Biol Trace Elem Res 186:52–67

    Article  CAS  PubMed  Google Scholar 

  5. Treviño S, Díaz A, Sánchez-Lara E, Sanchez-Gaytan BL, Perez-Aguilar JM, González-Vergara E (2019) Vanadium in biological action: chemical, pharmacological aspects, and metabolic implications in diabetes mellitus. Biol Trace Elem Res 188:68–98

    Article  PubMed  CAS  Google Scholar 

  6. Wang J, Cui R, Zhang K, Ding X, Luo Y, Bai S, Zeng Q, Xuan Y, Su Z (2016) High-fat diet increased renal and hepatic oxidative stress induced by vanadium of Wistar rat. Biol Trace Elem Res 170:415–423

    Article  CAS  PubMed  Google Scholar 

  7. Zhao Y, Ye L, Liu H, **a Q, Zhang Y, Yang X, Wang K (2010) Vanadium compounds induced mitochondria permeability transition pore (PTP) opening related to oxidative stress. J Inorg Biochem 104:371–378

    Article  CAS  PubMed  Google Scholar 

  8. Ahmadi F, Nematbakhsh M, Kargarfard M, Eshraghi-Jazi F, Talebi A, Shirdavani S (2016) Effect of aerobic exercise against vanadyl sulphate-induced nephrotoxicity and hepatotoxicity in rats. J Renal Inj Prev 5:183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Marouane W, Soussi A, Murat J-C, Bezzine S, El Feki A (2011) The protective effect of Malva sylvestris on rat kidney damaged by vanadium. Lipids Health Dis 10:65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tas S, Sarandol E, Ayvalik SZ, Serdar Z, Dirican M (2007) Vanadyl sulfate, taurine, and combined vanadyl sulfate and taurine treatments in diabetic rats: effects on the oxidative and antioxidative systems. Arch Med Res 38:276–283

    Article  CAS  PubMed  Google Scholar 

  11. Zendeboodi S, Esmaili A, Movahed A, Fatemikia H, Jamshidi A, Nazari M, Heydari H, Seyedian R (2019) The attenuative effects of oral resveratrol on renal changes induced by vanadium injection in rats. J Renal Inj Prev 8:127–132

    Article  CAS  Google Scholar 

  12. Gómez GI, Velarde V (1864) Boldine improves kidney damage in the goldblatt 2K1C model avoiding the increase in TGF-β. Int J Mol Sci 2018:19

    Google Scholar 

  13. Shigemura N, Takai S, Hirose F, Yoshida R, Sanematsu K, Ninomiya Y (2019) Expression of renin-angiotensin system components in the taste organ of mice. Nutrients 11:2251

    Article  CAS  PubMed Central  Google Scholar 

  14. **ong D, Hu W, Ye S-T, Tan Y-S (2018) Isoliquiritigenin alleviated the Ang II-induced hypertensive renal injury through suppressing inflammation cytokines and oxidative stress-induced apoptosis via Nrf2 and NF-κB pathways. Biochem Biophys Res Commun 506:161–168

    Article  CAS  PubMed  Google Scholar 

  15. Loeffler I, Wolf G (2014) Transforming growth factor-β and the progression of renal disease. Nephrol Dial Transplant 29:i37–i45

    Article  CAS  PubMed  Google Scholar 

  16. Liu G-X, Li Y-Q, Huang XR, Wei L, Chen H-Y, Shi Y-J, Heuchel RL, Lan HY (2013) Disruption of Smad7 promotes ANG II-mediated renal inflammation and fibrosis via Sp1-TGF-β/Smad3-NF. κB-dependent mechanisms in mice. PloS one 8:e53573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hayes JD, Dinkova-Kostova AT (2014) The Nrf2 regulatory network provides an interface between redox and intermediary metabolism. Trends Biochem Sci 39:199–218

    Article  CAS  PubMed  Google Scholar 

  18. Shin, J.H.; Kim, K.M.; Jeong, J.U.; Shin, J.M.; Kang, J.H.; Bang, K.; Kim, J.-H. Nrf2-heme oxygenase-1 attenuates high-glucose-induced epithelial-to-mesenchymal transition of renal tubule cells by inhibiting ROS-mediated PI3K/Akt/GSK-3β signaling. Journal of diabetes research 2019, 2019.

  19. Wei W, **ao W, Zhang XS, Liang CZ (2018) Cryptotanshinone attenuates oxidative stress and inflammation through the regulation of Nrf-2 and NF-jB in mice with unilateral ureteral obstruction. Basic Clin Pharmacol Toxicol 123:2714–2720

    Google Scholar 

  20. Kandeil MA, Mahmoud MO, Abdel-Razik A-RH, Gomaa SB (2019) Thymoquinone and geraniol alleviate cisplatin-induced neurotoxicity in rats through downregulating the p38 MAPK/STAT-1 pathway and oxidative stress. Life Sci 228:145–151

    Article  CAS  PubMed  Google Scholar 

  21. Collins K, Fitzgerald G, Stanton C, Ross R (2016) Looking beyond the terrestrial: the potential of seaweed derived bioactives to treat non-communicable diseases. Mar Drugs 14:60

    Article  PubMed Central  CAS  Google Scholar 

  22. Shehzad, A.; Zahid, A.; Latif, A.; Amir, R.M.; Suleria, H.A.R. Marine foods: nutritional significance and their industrial applications. Technological Processes for Marine Foods, From Water to Fork: Bioactive Compounds, Industrial Applications, and Genomics 2019, 289.

  23. Kokilam G, Vasuki S (2014) Biochemical and phytochemical analysis on Ulva fasciata and Caulerpa taxifolia. Int J Pharmaceut Sci Research 4:7–11

    Google Scholar 

  24. Ibraheem, I.B.; Elaziz, B.E.A.; Moawad, A.; Hassan, H.M.; Mohamed, W.A.; Abdel-Raouf, N. Antimicrobial and anti-inflammatory effects of two different marine red algae species collected from Quseir, the Red Sea, Egypt. Asian Journal of Biology 2017, 1–10.

  25. Alghazeer, R.; Enaeli, M.; Howell, N.K. Anticancer and antioxidant activities of some algae from western Libyan coast. 2016.

  26. Haq SH, Al-Ruwaished G, Al-Mutlaq MA, Naji SA, Al-Mogren M, Al-Rashed S, Ain QT, Al-Amro AA, Al-Mussallam A (2019) Antioxidant, anticancer activity and phytochemical analysis of green algae, Chaetomorpha collected from the Arabian Gulf. Sci Rep 9:1–7

    Article  CAS  Google Scholar 

  27. Abdel-Raouf N, Al-Enazi NM, Ibraheem IB (2017) Green biosynthesis of gold nanoparticles using Galaxaura elongata and characterization of their antibacterial activity. Arab J Chem 10:S3029–S3039

    Article  CAS  Google Scholar 

  28. Rezayian M, Niknam V, Ebrahimzadeh H (2019) Oxidative damage and antioxidative system in algae. Toxicol Rep 6:1309–1313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rashad S, El-Chaghaby AG (2020) Marine algae in Egypt: distribution, phytochemical composition and biological uses as bioactive resources (a review). Egypt J Aquat Biol Fish 24:147–160

    Article  Google Scholar 

  30. Mohy El-Din SM, El-Ahwany AM (2016) Bioactivity and phytochemical constituents of marine red seaweeds (Jania rubens, Corallina mediterranea and Pterocladia capillacea). Journal of Taibah University for Science 10:471–484

    Article  Google Scholar 

  31. Faten Abou-Elella MMA (2015) Enteromorpha compressa, Gelidium pulchrum macro algae exhibit potent anticancer, antioxidant and anti-inflammatory activities. Int J Phytomedicine 7:34–45

    Google Scholar 

  32. Patton CJ, Crouch S (1977) Spectrophotometric and kinetics investigation of the Berthelot reaction for the determination of ammonia. Anal Chem 49:464–469

    Article  CAS  Google Scholar 

  33. Weissman, M.; Pileggi, V.; Henry, R.; Cannon, D.; Winkelman, J. Clinical Chemistry: Principles and Techniques. 1974.

  34. Fang Y, Gao F, Liu Z (2019) Angiotensin-converting enzyme 2 attenuates inflammatory response and oxidative stress in hyperoxic lung injury by regulating NF-κB and Nrf2 pathways. QJM An Int J Med 112:914–924

    Article  CAS  Google Scholar 

  35. Beutler E (1963) Improved method for the determination of blood glutathione. J lab clin Med 61:882–888

    CAS  PubMed  Google Scholar 

  36. Goldberg D, Spooner R (1983) Methods of enzymatic analysis. Bergmeyer HV 3:258–265

    CAS  Google Scholar 

  37. Aebi, H. [13] Catalase in vitro. In Methods in enzymology; Elsevier: 1984; Volume 105, pp. 121–126.

  38. Buege, J.A.; Aust, S.D. [30] Microsomal lipid peroxidation. In Methods in enzymology; Elsevier: 1978; Volume 52, pp. 302–310.

  39. Wang J, Edeen K, Manzer R, Chang Y, Wang S, Chen X, Funk CJ, Cosgrove GP, Fang X, Mason RJ (2007) Differentiated human alveolar epithelial cells and reversibility of their phenotype in vitro. Am J Respir Cell Mol Biol 36:661–668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Marks, H.M. The progress of experiment: science and therapeutic reform in the United States, 1900–1990; Cambridge University Press: 2000.

  41. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  42. Burton K (1956) A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochemical journal 62:315–323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Suvarna, K.S.; Layton, C.; Bancroft, J.D. Bancroft's theory and practice of histological techniques E-Book; Elsevier Health Sciences: 2018.

  44. Sysel AM, Valli VE, Nagle RB, Bauer JA (2013) Immunohistochemical quantification of the vitamin B12 transport protein (TCII), cell surface receptor (TCII-R) and Ki-67 in human tumor xenografts. Anticancer Res 33:4203–4212

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Missaoui, S.; Ben Rhouma, K.; Yacoubi, M.-T.; Sakly, M.; Tebourbi, O. Vanadyl sulfate treatment stimulates proliferation and regeneration of beta cells in pancreatic islets. Journal of diabetes research 2014, 2014.

  46. Wallace, D.R. Quinoline. In Encyclopedia of toxicology: third edition; Elsevier: 2014; pp. 23–25.

  47. Shehzad, S. The potential effect of vanadium compounds on glucose-6-phosphatase. Bioscience Horizons: The International Journal of Student Research 2013, 6.

  48. Espinosa-Zurutuza M, González-Villalva A, Albarrán-Alonso JC, Colín-Barenque L, Bizarro-Nevares P, Rojas-Lemus M, López-Valdéz N, Fortoul TI (2018) Oxidative stress as a mechanism involved in kidney damage after subchronic exposure to vanadium inhalation and oral sweetened beverages in a mouse model. Int J Toxicol 37:45–52

    Article  CAS  PubMed  Google Scholar 

  49. Liu Y, Chen D, **ng Y, Ge N, Zhang Y, Liu J, Zou W (2014) A new oxovanadium complex enhances renal function by improving insulin signaling pathway in diabetic mice. J Diabetes Complications 28:265–272

    Article  CAS  PubMed  Google Scholar 

  50. Shukla R, Barve V, Padhye S, Bhonde R (2006) Reduction of oxidative stress induced vanadium toxicity by complexing with a flavonoid, quercetin: a pragmatic therapeutic approach for diabetes. Biometals 19:685–693

    Article  CAS  PubMed  Google Scholar 

  51. Jc M, Jp S (2009) Green tea drinking reduces the effects of vanadium poisoning in rat kidney. Food science and technology research 15:413–422

    Article  Google Scholar 

  52. Vijaya Bharathi B, Jaya Prakash G, Krishna K, Ravi Krishna C, Sivanarayana T, Madan K, Rama Raju G, Annapurna A (2015) Protective effect of alpha glucosyl hesperidin (G-hesperidin) on chronic vanadium induced testicular toxicity and sperm nuclear DNA damage in male Sprague Dawley rats. Andrologia 47:568–578

    Article  CAS  PubMed  Google Scholar 

  53. Cox, S.; Abu-Ghannam, N.; Gupta, S. An assessment of the antioxidant and antimicrobial activity of six species of edible Irish seaweeds. 2010.

  54. Rajasulochana P, Krishnamoorthy P, Dhamotharan R (2012) Potential application of Kappaphycus alvarezii in agricultural and pharmaceutical industry. J Chem Pharm Res 4:33–37

    CAS  Google Scholar 

  55. Li W-R, **e X-B, Shi Q-S, Zeng H-Y, You-Sheng O-Y, Chen Y-B (2010) Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Appl Microbiol Biotechnol 85:1115–1122

    Article  CAS  PubMed  Google Scholar 

  56. Yadav A, Yadav M, Kumar S, Sharma D, Yadav J (2018) In vitro antioxidant activities and GC-MS analysis of different solvent extracts of Acacia nilotica leaves. Indian J Pharm Sci 80:892–902

    Article  CAS  Google Scholar 

  57. Pontiki E, Hadjipavlou-Litina D, Litinas K, Geromichalos G (2014) Novel cinnamic acid derivatives as antioxidant and anticancer agents: design, synthesis and modeling studies. Molecules 19:9655–9674

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Bezerra GSN, Pereira MAV, Ostrosky EA, Barbosa EG, de Moura MdFV, Ferrari M, Aragão CFS, Gomes APB (2017) Compatibility study between ferulic acid and excipients used in cosmetic formulations by TG/DTG, DSC and FTIR. J Therm Anal Calorim 127:1683–1691

    Article  CAS  Google Scholar 

  59. Srinivasan M, Sudheer AR, Menon VP (2007) Ferulic acid: therapeutic potential through its antioxidant property. J Clin Biochem Nutr 40:92–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Topal F, Nar M, Gocer H, Kalin P, Kocyigit UM, Gülçin İ, Alwasel SH (2016) Antioxidant activity of taxifolin: an activity–structure relationship. J Enzyme Inhib Med Chem 31:674–683

    Article  CAS  PubMed  Google Scholar 

  61. Makena PS, Pierce SC, Chung KT, Sinclair SE (2009) Comparative mutagenic effects of structurally similar flavonoids quercetin and taxifolin on tester strains Salmonella typhimurium TA102 and Escherichia coli WP-2 uvrA. Environ Mol Mutagen 50:451–459

    Article  CAS  PubMed  Google Scholar 

  62. Kwon J-H, Kim S-B, Park K-H, Lee M-W (2011) Antioxidative and anti-inflammatory effects of phenolic compounds from the roots of Ulmus macrocarpa. Arch Pharmacal Res 34:1459–1466

    Article  CAS  Google Scholar 

  63. Zhang H-M, Zhao L, Li H, Xu H, Chen W-W, Tao L (2014) Research progress on the anticarcinogenic actions and mechanisms of ellagic acid. Cancer Biol Med 11:92

    PubMed  PubMed Central  Google Scholar 

  64. Kilic I, Yeşiloğlu Y, Bayrak Y (2014) Spectroscopic studies on the antioxidant activity of ellagic acid. Spectrochim Acta Part A Mol Biomol Spectrosc 130:447–452

    Article  CAS  Google Scholar 

  65. Sansoè G, Aragno M, Wong F (2020) Pathways of hepatic and renal damage through non-classical activation of the renin-angiotensin system in chronic liver disease. Liver Int 40:18–31

    Article  PubMed  CAS  Google Scholar 

  66. Gupta A, Rhodes GJ, Berg DT, Gerlitz B, Molitoris BA, Grinnell BW (2007) Activated protein C ameliorates LPS-induced acute kidney injury and downregulates renal INOS and angiotensin 2. American Journal of Physiology-Renal Physiology 293:F245–F254

    Article  CAS  PubMed  Google Scholar 

  67. Nogueira A, Pires MJ, Oliveira PA (2017) Pathophysiological mechanisms of renal fibrosis: a review of animal models and therapeutic strategies. Nn Vivo 31:1

    Article  CAS  Google Scholar 

  68. Huang XR, Chung AC, Yang F, Yue W, Deng C, Lau CP, Tse HF, Lan HY (2010) Smad3 mediates cardiac inflammation and fibrosis in angiotensin II–induced hypertensive cardiac remodeling. Hypertension 55:1165–1171

    Article  CAS  PubMed  Google Scholar 

  69. Sureshbabu, A.; Muhsin, S.A.; Choi, M.E. TGF-β signaling in the kidney: profibrotic and protective effects. American Journal of Physiology-Renal Physiology 2016.

  70. Meng X-M, Tang PM-K, Li J, Lan HY (2015) TGF-β/Smad signaling in renal fibrosis. Front Physiol 6:82

    Article  PubMed  PubMed Central  Google Scholar 

  71. Meng X-M, Nikolic-Paterson DJ, Lan HY (2016) TGF-β: the master regulator of fibrosis. Nat Rev Nephrol 12:325

    Article  CAS  PubMed  Google Scholar 

  72. Chen HY, Huang XR, Wang W, Li JH, Heuchel RL, Chung AC, Lan HY (2011) The protective role of Smad7 in diabetic kidney disease: mechanism and therapeutic potential. Diabetes 60:590–601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Shan, Q.; Zhuang, J.; Zheng, G.; Zhang, Z.; Zhang, Y.; Lu, J.; Zheng, Y. Troxerutin reduces kidney damage against BDE-47-induced apoptosis via inhibiting NOX2 activity and increasing Nrf2 activity. Oxidative medicine and cellular longevity 2017, 2017.

  74. Cao S-S, Yan M, Hou Z-Y, Chen Y, Jiang Y-S, Fan X-R, Fang P-F, Zhang B-K (2017) Danshen modulates Nrf2-mediated signaling pathway in cisplatin-induced renal injury. Current Medical Science 37:761–765

    Article  CAS  Google Scholar 

  75. Ahmed SMU, Luo L, Namani A, Wang XJ, Tang X (2017) Nrf2 signaling pathway: pivotal roles in inflammation. Biochim Biophys Acta Mol Basis Dis 1863:585–597

    Article  CAS  PubMed  Google Scholar 

  76. Qin T, Du R, Huang F, Yin S, Yang J, Qin S, Cao W (2016) Sinomenine activation of Nrf2 signaling prevents hyperactive inflammation and kidney injury in a mouse model of obstructive nephropathy. Free Radical Biol Med 92:90–99

    Article  CAS  Google Scholar 

  77. Suzuki T, Yamamoto M (2015) Molecular basis of the Keap1–Nrf2 system. Free Radical Biol Med 88:93–100

    Article  CAS  Google Scholar 

  78. Lever JM, Boddu R, George JF, Agarwal A (2016) Heme oxygenase-1 in kidney health and disease. Antioxid Redox Signal 25:165–183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kim HJ, Vaziri ND (2010) Contribution of impaired Nrf2-Keap1 pathway to oxidative stress and inflammation in chronic renal failure. American journal of physiology-renal physiology 298:F662–F671

    Article  CAS  PubMed  Google Scholar 

  80. Kumar, D.; Singla, S.K.; Puri, V.; Puri, S. The restrained expression of NF-kB in renal tissue ameliorates folic acid induced acute kidney injury in mice. PLoS One 2015, 10.

  81. Pittock ST, Norby SM, Grande JP, Croatt AJ, Bren GD, Badley AD, Caplice NM, Griffin MD, Nath KA (2005) MCP-1 is up-regulated in unstressed and stressed HO-1 knockout mice: Pathophysiologic correlates1. Kidney Int 68:611–622

    Article  CAS  PubMed  Google Scholar 

  82. Sung FL, Zhu TY, Au-Yeung KK, Siow YL, Karmin O (2002) Enhanced MCP-1 expression during ischemia/reperfusion injury is mediated by oxidative stress and NF-κB. Kidney Int 62:1160–1170

    Article  CAS  PubMed  Google Scholar 

  83. Sharma D, Bhattacharya P, Kalia K, Tiwari V (2017) Diabetic nephropathy: new insights into established therapeutic paradigms and novel molecular targets. Diabetes Res Clin Pract 128:91–108

    Article  CAS  PubMed  Google Scholar 

  84. García-García PM, Getino-Melián MA, Domínguez-Pimentel V, Navarro-González JF (2014) Inflammation in diabetic kidney disease. World J Diabetes 5:431

    Article  PubMed  PubMed Central  Google Scholar 

  85. Liu G-X, Li Y-Q, Huang XR, Wei LH, Zhang Y, Feng M, Meng X-M, Chen H-Y, Shi Y-J, Lan HY (2014) Smad7 inhibits AngII-mediated hypertensive nephropathy in a mouse model of hypertension. Clin Sci 127:195–208

    Article  CAS  Google Scholar 

  86. Ka S, Yeh Y, Huang X, Chao T, Hung Y, Yu C, Lin T, Wu C, Lan H, Chen A (2012) Kidney-targeting Smad7 gene transfer inhibits renal TGF-β/MAD homologue (SMAD) and nuclear factor κB (NF-κB) signalling pathways, and improves diabetic nephropathy in mice. Diabetologia 55:509–519

    Article  CAS  PubMed  Google Scholar 

  87. Mu M, Zuo S, Wu R-M, Deng K-S, Lu S, Zhu J-J, Zou G-L, Yang J, Cheng M-L, Zhao X-K (2018) Ferulic acid attenuates liver fibrosis and hepatic stellate cell activation via inhibition of TGF-β/Smad signaling pathway. Drug Des Dev Ther 12:4107

    Article  CAS  Google Scholar 

  88. Wu X, Ding X, Ding Z, Jia P (2018) Total flavonoids from leaves of carya cathayensis ameliorate renal fibrosis via the miR-21/Smad7 signaling pathway. Cell Physiol Biochem 49:1551–1563

    Article  CAS  PubMed  Google Scholar 

  89. Lan HY (2008) Smad7 as a therapeutic agent for chronic kidney diseases. Front Biosci 13:4984–4992

    Article  CAS  PubMed  Google Scholar 

  90. Cichocki M, Blumczyńska J, Baer-Dubowska W (2010) Naturally occurring phenolic acids inhibit 12-O-tetradecanoylphorbol-13-acetate induced NF-κB, iNOS and COX-2 activation in mouse epidermis. Toxicology 268:118–124

    Article  CAS  PubMed  Google Scholar 

  91. Cao Y-J, Zhang Y-M, Qi J-P, Liu R, Zhang H, He L-C (2015) Ferulic acid inhibits H2O2-induced oxidative stress and inflammation in rat vascular smooth muscle cells via inhibition of the NADPH oxidase and NF-κB pathway. Int Immunopharmacol 28:1018–1025

    Article  CAS  PubMed  Google Scholar 

  92. Ahad A, Ganai AA, Mujeeb M, Siddiqui WA (2014) Ellagic acid, an NF-κB inhibitor, ameliorates renal function in experimental diabetic nephropathy. Chem Biol Interact 219:64–75

    Article  CAS  PubMed  Google Scholar 

  93. Wang W, Ma B-L, Xu C-G, Zhou X-J (2020) Dihydroquercetin protects against renal fibrosis by activating the Nrf2 pathway. Phytomedicine 69:153185

    Article  CAS  PubMed  Google Scholar 

  94. Tebay LE, Robertson H, Durant ST, Vitale SR, Penning TM, Dinkova-Kostova AT, Hayes JD (2015) Mechanisms of activation of the transcription factor Nrf2 by redox stressors, nutrient cues, and energy status and the pathways through which it attenuates degenerative disease. Free Radical Biol Med 88:108–146

    Article  CAS  Google Scholar 

  95. Chew E-H, Nagle AA, Zhang Y, Scarmagnani S, Palaniappan P, Bradshaw TD, Holmgren A, Westwell AD (2010) Cinnamaldehydes inhibit thioredoxin reductase and induce Nrf2: potential candidates for cancer therapy and chemoprevention. Free Radical Biol Med 48:98–111

    Article  CAS  Google Scholar 

  96. Mahmoud AM, Hussein OE, Abd El-Twab SM, Hozayen WG (2019) Ferulic acid protects against methotrexate nephrotoxicity via activation of Nrf2/ARE/HO-1 signaling and PPARγ, and suppression of NF-κB/NLRP3 inflammasome axis. Food Funct 10:4593–4607

    Article  CAS  PubMed  Google Scholar 

  97. Bellezza I, Tucci A, Galli F, Grottelli S, Mierla AL, Pilolli F, Minelli A (2012) Inhibition of NF-κB nuclear translocation via HO-1 activation underlies α-tocopheryl succinate toxicity. J Nutr Biochem 23:1583–1591

    Article  CAS  PubMed  Google Scholar 

  98. Tsai C-L, Lin Y-C, Wang H-M, Chou T-C (2014) Baicalein, an active component of Scutellaria baicalensis, protects against lipopolysaccharide-induced acute lung injury in rats. J Ethnopharmacol 153:197–206

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the staff members of the Biochemistry Department, Faculty of Veterinary Medicine, Beni-Suef University, for their helpfulness during all the steps of the experiment. The authors thank Dr. Khaled Elsayed Assistant professor at Physiological Division, Botany and Microbiology Department, Faculty of Science, Beni-Suef University, for providing the characterization of the alga.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, K.H., and A. A; methodology, K. H., A.A, W.H, and S.A.; software, K.H.; formal analysis, K.H, A.A., W.H., and S.A.; investigation, K.H., and A.A; writing–original draft preparation, K.H, A.A. and S.A; writing–review and editing, K.H. and W.H. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Khalid S. Hashem.

Ethics declarations

Ethics approval

Our current study was accepted by the Experimental Animal Ethics Committee on the faculty of Veterinary Medicine, Beni-Suef University, Egypt, and all procedures for agent administration, blood, and tissue collection were in accordance with the National Institutes of Health (NIH) guide for the care and use of laboratory animals (NIH Publications No. 8023, revised 1978), Approval No. (020–120).

Supplementary Information: supplementary materials will be available when requested.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamel, A.K.A., Hozayen, W., El-kawi, S.H.A. et al. Galaxaura elongata Extract (GE) Modulates Vanadyl Sulfate-Induced Renal Damage via Regulating TGF-β/Smads and Nrf2/NF-κB Pathways. Biol Trace Elem Res 200, 3187–3204 (2022). https://doi.org/10.1007/s12011-021-02913-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-021-02913-w

Keywords

Navigation