Log in

Sodium P-aminosalicylic Acid Inhibits Manganese-Induced Neuroinflammation in BV2 Microglial Cells via NLRP3-CASP1 Inflammasome Pathway

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Background

Sodium p-aminosalicylic acid (PAS-Na) was reported to exhibit anti-inflammatory effect in the nervous system. However, the mechanism by which PAS-Na exhibits anti-inflammatory effects on manganese (Mn)-stimulated BV2 microglia cells remains unclear. Thus, this study investigated the role of PAS-Na in Mn-stimulated BV2 microglial cells.

Methods

Microglia-like BV2 were treated with MnCl2 with or without the non-steroidal anti-inflammatory drug PAS-Na for 12 or 24 h to examine cell viability using MTT; for 24 or 48 h to examine levels of NLRP3, CASP1, IL-1β, and IL-18 mRNA using Real-Time quantitative PCR; for 48 h to examine levels of NLRP3 and CASP1 inflammasomes, measured by western blot analysis; and for 48 h to examine levels of inflammatory cytokines, measured by enzyme-linked immunosorbent assay.

Results

The MTT assay showed that PAS-Na produced significant neuroprotective effect by preventing Mn-induced inflammation in BV2 microglial cells. PAS-Na significantly concentration and time dependently inhibited Mn-induced production of NLRP3, CASP1, IL-1β, and IL-18.

Conclusion

Taken together, our results suggest that PAS-Na exerts anti-inflammatory effects in Mn-stimulated BV2 microglial cells via downregulation of NLRP3, CASP1, IL-1β, and I L-18. Furthermore, a high concentration and prolonged PAS-Na treatment appear necessary for its therapeutic efficacy. Taken together, we conclude that PAS-Na affords therapeutic efficacy in mitigating neurological conditions associated with neuroinflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

Abbreviations

Mn:

manganese

PD:

Parkinson’s disease

AD:

Alzheimer’s disease

CNS:

central nervous system

IL1β:

interleukin 1 β

IL18:

interleukin 18

NLRP3:

NLR family, pyrin domain containing 3

CASP1:

caspase-1

PAS-Na:

sodium p-aminosalicylic acid

qPCR:

quantitative real-time polymerase chain reaction

ELISA:

enzyme-linked immunosorbent assay

References

  1. Aschner JL, Aschner M (2005) Nutritional aspects of manganese homeostasis. Mol Asp Med 26(4-5):353–362. https://doi.org/10.1016/j.mam.2005.07.003

    Article  CAS  Google Scholar 

  2. Wang D, Zhang J, Jiang W, Cao Z, Zhao F, Cai T, Aschner M, Luo W (2017) The role of NLRP3-CASP1 in inflammasome-mediated neuroinflammation and autophagy dysfunction in manganese-induced, hippocampal-dependent impairment of learning and memory ability. Autophagy 13(5):914–927. https://doi.org/10.1080/15548627.2017.1293766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Martinez-Finley EJ, Gavin CE, Aschner M, Gunter TE (2013) Manganese neurotoxicity and the role of reactive oxygen species. Free Radic Biol Med 62:65–75. https://doi.org/10.1016/j.freeradbiomed.2013.01.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tuschl K, Mills PB, Clayton PT (2013) Manganese and the brain. Int Rev Neurobiol 110:277–312. https://doi.org/10.1016/b978-0-12-410502-7.00013-2

    Article  CAS  PubMed  Google Scholar 

  5. Kim J, Pajarillo E, Rizor A, Son DS, Lee J, Aschner M, Lee E (2019) LRRK2 kinase plays a critical role in manganese-induced inflammation and apoptosis in microglia. PLoS One 14(1):e0210248. https://doi.org/10.1371/journal.pone.0210248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Langley MR, Ghaisas S, Ay M, Luo J, Palanisamy BN, ** H, Anantharam V, Kanthasamy A, Kanthasamy AG (2018) Manganese exposure exacerbates progressive motor deficits and neurodegeneration in the MitoPark mouse model of Parkinson’s disease: relevance to gene and environment interactions in metal neurotoxicity. Neurotoxicology 64:240–255. https://doi.org/10.1016/j.neuro.2017.06.002

    Article  CAS  PubMed  Google Scholar 

  7. Ijomone OM, Aluko OM, Okoh COA, Martins AC Jr, Aschner M (2019) Role for calcium signaling in manganese neurotoxicity. J Trace Elem Med Biol 56:146–155. https://doi.org/10.1016/j.neuro.2017.06.002

    Article  CAS  PubMed  Google Scholar 

  8. Yin L, Dai Q, Jiang P, Zhu L, Dai H, Yao Z, Liu H, Ma X, Qu L, Jiang J (2018) Manganese exposure facilitates microglial JAK2-STAT3 signaling and consequent secretion of TNF-a and IL-1β to promote neuronal death. Neurotoxicology 64:195–203. https://doi.org/10.1016/j.neuro.2017.04.001

    Article  CAS  PubMed  Google Scholar 

  9. Crittenden PL, Filipov NM (2008) Manganese-induced potentiation of in vitro proinflammatory cytokine production by activated microglial cells is associated with persistent activation of p38 MAPK. Toxicol in Vitro 22(1):18–27. https://doi.org/10.1016/j.tiv.2007.07.004

    Article  CAS  PubMed  Google Scholar 

  10. Abe H, Ohishi T, Nakane F, Shiraki A, Tanaka T, Yoshida T, Shibutani M (2015) Exposure to MnCl2 . 4H2O during development induces activation of microglial and perivascular macrophage populations in the hippocampal dentate gyrus of rats. J Appl Toxicol 35(5):529–535. https://doi.org/10.1002/jat.3059

    Article  CAS  PubMed  Google Scholar 

  11. Colonna M, Butovsky O (2017) Microglia function in the central nervous system during health and neurodegeneration. Annu Rev Immunol 35:441–468. https://doi.org/10.1146/annurev-immunol-051116-052358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kabba JA, Xu Y, Christian H, Ruan W, Chenai K, **ang Y, Zhang L, Saavedra JM, Pang T (2018) Microglia: housekeeper of the central nervous system. Cell Mol Neurobiol 38(1):53–71. https://doi.org/10.1007/s10571-017-0504-2

    Article  CAS  PubMed  Google Scholar 

  13. Kirkley KS, Popichak KA, Afzali MF, Legare ME, Tjalkens RB (2017) Microglia amplify inflammatory activation of astrocytes in manganese neurotoxicity. J Neuroinflammation 14(1):99. https://doi.org/10.1186/s12974-017-0871-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kraft AD, Harry GJ (2011) Features of microglia and neuroinflammation relevant to environmental exposure and neurotoxicity. Int J Environ Res Public Health 8(7):2980–3018. https://doi.org/10.3390/ijerph8072980

    Article  PubMed  PubMed Central  Google Scholar 

  15. Sarkar S, Rokad D, Malovic E, Luo J, Harischandra DS, ** H, Anantharam V, Huang X, Lewis M, Kanthasamy A, Kanthasamy AG (2019) Manganese activates NLRP3 inflammasome signaling and propagates exosomal release of ASC in microglial cells. Sci Signal 12(563):eaat9900. https://doi.org/10.1126/scisignal.aat9900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chen J, Su P, Luo W, Chen J (2018) Role of LRRK2 in manganese-induced neuroinflammation and microglial autophagy. Biochem Biophys Res Commun 498(1):171–177. https://doi.org/10.1016/j.bbrc.2018.02.007

    Article  CAS  PubMed  Google Scholar 

  17. Tjalkens RB, Popichak KA, Kirkley KA (2017) Inflammatory activation of microglia and astrocytes in manganese neurotoxicity. Adv Neurobiol 18:159–181

    Article  PubMed  PubMed Central  Google Scholar 

  18. Parvez MM, Shin HJ, Jung JA, Shin JG (2017) Evaluation of para-aminosalicylic acid as a substrate of multiple solute carrier uptake transporters and possible drug interactions with nonsteroidal anti-inflammatory drugs in vitro. Antimicrob Agents Chemother 61(5). https://doi.org/10.1128/AAC.02392-16

  19. Zheng W, Jiang YM, Zhang Y, Jiang W, Wang X, Cowan DM (2009) Chelation therapy of manganese intoxication with para-aminosalicylic acid (PAS) in Sprague–Dawley rats. NeuroToxicology 30(2):240–248. https://doi.org/10.1016/j.neuro.2008.12.007

    Article  CAS  PubMed  Google Scholar 

  20. Jiang YM, Mo XA, Du FQ, Fu X, Zhu XY, Gao HY, **e JL, Liao FL, Pira E, Zheng W (2006) Effective treatment of manganese-induced occupational Parkinsonism with p-aminosalicylic acid: a case of 17-year follow-up study. J Occup Environ Med 48(6):644–649. https://doi.org/10.1097/01.jom.0000204114.01893.3e

    Article  PubMed  PubMed Central  Google Scholar 

  21. Du QF, Mo XA, Jiang YM, Fu X, Gao HY, Liao FL (2008) A 17-year follow-up observation on a case of effective treatment of severe chronic manganese intoxication with p-aminosalicylic acid [in Chinese]. Chin Occup Med 35(5):398–399

    Google Scholar 

  22. Ky S, Deng H, **e P, Hu W (1992) A report of two cases of chronic serious manganese poisoning treated with sodium para-aminosalicylic acid. Br J Ind Med 49(1):66–69. https://doi.org/10.1136/oem.49.1.66

  23. Ky SQ, Hu WD, Jiang YM, Wei XM, Huang B, Hong XJ, Ge LH, Guo JX, Huang CP (1995) Sodium P-aminosalicylic acid of mechanism in treating chronic manganese poisoning [in Chinese]. J Guangxi Med Univ (04):477–483. https://doi.org/10.16190/j.cnki.45-1211/r.1995.04.001

  24. Li SJ, Qin WX, Peng DJ, Yuan ZX, He SN, Luo YN, Aschner M, Jiang YM, Liang DY, **e BY, Xu F (2018) Sodium P-aminosalicylic acid inhibits sub-chronic manganese-induced neuroinflammation in rats by modulating MAPK and COX-2. Neurotoxicology 64:219–229. https://doi.org/10.1016/j.neuro.2017.06.012

    Article  CAS  PubMed  Google Scholar 

  25. Li SJ, Li Y, Chen JW, Yuan ZX, Mo YH, Lu GD, Jiang YM, Ou CY, Wang F, Huang XW, Luo YN, Ou SY, Huang YN (2016) Sodium para-aminosalicylic acid protected primary cultured basal ganglia neurons of rat from manganese-induced oxidative impairment and changes of amino acid neurotransmitters. Biol Trace Elem Res 170(2):357–365. https://doi.org/10.1007/s12011-015-0472-7

    Article  CAS  PubMed  Google Scholar 

  26. Ou CY, Luo YN, He SN, Deng XF, Luo HL, Yuan ZX, Meng HY, Mo YH, Li SJ, Jiang YM (2016) Sodium P-aminosalicylic acid improved manganese-induced learning and memory dysfunction via restoring the ultrastructural alterations and γ-aminobutyric acid metabolism imbalance in the basal ganglia. Biol Trace Elem Res 176(1):143–153. https://doi.org/10.1007/s12011-016-0802-4

    Article  CAS  PubMed  Google Scholar 

  27. Peng DJ, Zhang YW, Li ZC, Li SJ, Cai M, Qin WX, Ou SY, Huang XW, Yuan ZX, Jiang YM (2019) Preventive impacts of PAS-Na on the slow growth and activated inflammatory responses in Mn-exposed rats. J Trace Elem Med Biol 54:134–141. https://doi.org/10.1016/j.jtemb.2019.04.013

    Article  CAS  PubMed  Google Scholar 

  28. Crossgrove J, Zheng W (2004) Manganese toxicity upon overexposure. NMR Biomed 17(8):544–553. https://doi.org/10.1002/nbm.931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ward RJ, Crichton RR (2019) Manganese: its role in disease and health. Met Ions Life Sci 19. https://doi.org/10.1515/9783110527872-010

  30. Dickerson RN (2001) Manganese intoxication and parenteral nutrition. Nutrition 17(7-8):689–693. https://doi.org/10.1016/s0899-9007(01)00546-9

    Article  CAS  PubMed  Google Scholar 

  31. Nizami S, Hall-Roberts H, Warrier S, Cowley SA, Di Daniel E (2014) Thalamic GABA predicts fine motor performance in manganese-exposed smelter workers. PLoS One 9(2):3515–3532. https://doi.org/10.1111/bph.14618

    Article  CAS  Google Scholar 

  32. Wang H, Yang F, **n R, Cui D, He J, Zhang S, Sun Y (2020) The gut microbiota attenuate neuroinflammation in manganese exposure by inhibiting cerebral NLRP3 inflammasome. Biomed Pharmacother 129:110449. https://doi.org/10.1016/j.biopha.2020.110449

    Article  CAS  PubMed  Google Scholar 

  33. Tang Y, Le W (2016) Differential roles of M1 and M2 microglia in neurodegenerative diseases. Mol Neurobiol 53(2):1181–1194. https://doi.org/10.1007/s12035-014-9070-5

    Article  CAS  PubMed  Google Scholar 

  34. Liu M, Cai T, Zhao F, Zheng G, Wang Q, Chen Y, Huang C, Luo W, Chen J (2009) Effect of microglia activation on dopaminergic neuronal injury induced by manganese, and its possible mechanism. Neurotox Res 16(1):42–49. https://doi.org/10.1007/s12640-009-9045-x

    Article  CAS  PubMed  Google Scholar 

  35. Filipov NM, Dodd CA (2012) Role of glial cells in manganese neurotoxicity. J Appl Toxicol 32(5):310–317. https://doi.org/10.1002/jat.1762

    Article  CAS  PubMed  Google Scholar 

  36. Zhao F, Cai T, Liu M, Zheng G, Luo W, Chen J (2009) Manganese induces dopaminergic neurodegeneration via microglial activation in a rat model of manganism. Toxicol Sci 107(1):156–164. https://doi.org/10.1093/toxsci/kfn213

    Article  CAS  PubMed  Google Scholar 

  37. Jo EK, Kim JK, Shin DM, Sasakawa C (2016) Molecular mechanisms regulating NLRP3 inflammasome activation. Cell Mol Immunol 13(2):148–159. https://doi.org/10.1038/cmi.2015.95

    Article  CAS  PubMed  Google Scholar 

  38. Heneka MT, Kummer MP, Latz E (2014) Innate immune activation in neurodegenerative disease. Nat Rev Immunol 14(7):463–477. https://doi.org/10.1038/nri3705

    Article  CAS  PubMed  Google Scholar 

  39. Takahashi M (2019) Role of NLRP3 inflammasome in cardiac inflammation and remodeling after myocardial infarction. Biol Pharm Bull 42(4):518–523. https://doi.org/10.1248/bpb.b18-00369

    Article  CAS  PubMed  Google Scholar 

  40. Zhong Z, Sanchez-Lopez E, Karin M (2016) Autophagy, NLRP3 inflammasome and auto-inflammatory/immune diseases. Clin Exp Rheumatol 34(4 Suppl 98):12–16

    PubMed  Google Scholar 

  41. Hui B, Zhang L, Zhou Q, Hui L (2018) Pristimerin inhibits LPS-triggered neurotoxicity in BV-2 microglia cells through modulating IRAK1/TRAF6/TAK1-mediated NF-kappaB and AP-1 signaling pathways in vitro. Neurotox Res 33(2):268–283. https://doi.org/10.1007/s12640-017-9837-3

    Article  CAS  PubMed  Google Scholar 

  42. Li L, Sun Q, Li Y, Yang Y, Yang Y, Chang T, Man M, Zheng L (2015) Overexpression of SIRT1 induced by resveratrol and inhibitor of miR-204 suppresses activation and proliferation of microglia. J Mol Neurosci 56(4):858–867. https://doi.org/10.1007/s12031-015-0526-5

    Article  CAS  PubMed  Google Scholar 

  43. Nizami S, Hall-Roberts H, Warrier S, Cowley SA, Di Daniel E (2019) Microglial inflammation and phagocytosis in Alzheimer’s disease: potential therapeutic targets. Br J Pharmacol 176(18):3515–3532. https://doi.org/10.1111/bph.14618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Peng Z, Luchtman DW, Wang X, Zhang Y, Song C (2019) Activation of microglia synergistically enhances neurodegeneration caused by MPP(+) in human SH-SY5Y cells. Eur J Pharmacol 850:64–74. https://doi.org/10.1016/j.ejphar.2019.01.024

    Article  CAS  PubMed  Google Scholar 

  45. Kumar A, Chaudhary T, Mishra J (2013) Minocycline modulates neuroprotective effect of hesperidin against quinolinic acid induced Huntington’s disease like symptoms in rats: behavioral, biochemical, cellular and histological evidences. Eur J Pharmacol 720(1-3):16–28. https://doi.org/10.1016/j.ejphar.2013.10.057

    Article  CAS  PubMed  Google Scholar 

  46. Voet S, Srinivasan S, Lamkanfi M, van Loo G (2019) Inflammasomes in neuroinflammatory and neurodegenerative diseases. EMBO Mol Med 11(6). https://doi.org/10.15252/emmm.201810248

  47. Sarlus H, Heneka MT (2017) Microglia in Alzheimer’s disease. J Clin Invest 127(9):3240–3249. https://doi.org/10.1172/JCI90606

    Article  PubMed  PubMed Central  Google Scholar 

  48. Chu F, Shi M, Zheng C, Shen D, Zhu J, Zheng X, Cui L (2018) The roles of macrophages and microglia in multiple sclerosis and experimental autoimmune encephalomyelitis. J Neuroimmunol 318:1–7. https://doi.org/10.1016/j.jneuroim.2018.02.015

    Article  CAS  PubMed  Google Scholar 

  49. Santos AP, Lucas RL, Andrade V, Mateus ML, Milatovic D, Aschner M, Batoreu MC (2012) Protective effects of ebselen (Ebs) and para-aminosalicylic acid (PAS) against manganese (Mn)-induced neurotoxicity. Toxicol Appl Pharmacol 258(3):394–402. https://doi.org/10.1016/j.taap.2011.12.003

    Article  CAS  PubMed  Google Scholar 

  50. Kuwar R, Rolfe A, Di L, Xu H, He L, Jiang Y, Zhang S, Sun D (2019) A novel small molecular NLRP3 inflammasome inhibitor alleviates neuroinflammatory response following traumatic brain injury. J Neuroinflammation 16(1):81. https://doi.org/10.1186/s12974-019-1471-y

    Article  PubMed  PubMed Central  Google Scholar 

  51. Boucher D, Monteleone M, Coll RC, Chen KW, Ross CM, Teo JL, Gomez GA, Holley CL, Bierschenk D, Stacey KJ, Yap AS, Bezbradica JS, Schroder K (2018) Caspase-1 self-cleavage is an intrinsic mechanism to terminate inflammasome activity. J Exp Med 215(3):827–840. https://doi.org/10.1084/jem.20172222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gustin A, Kirchmeyer M, Koncina E, Felten P, Losciuto S, Heurtaux T, Tardivel A, Heuschling P, Dostert C (2015) NLRP3 inflammasome is expressed and functional in mouse brain microglia but not in astrocytes. PLoS One 10(6):e0130624. https://doi.org/10.1371/journal.pone.0130624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Schroder K, Tschopp J (2010) The inflammasomes. Cell 140(6):821–832. https://doi.org/10.1016/j.cell.2010.01.040

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Thanks to the fund support provided by grants from the National Natural Science Foundation of China (NSFC 81460505, 81973094). MA was supported in part by a grant from the National Institute of Environmental Health Science (NIEHS) R01ES10563.

Author information

Authors and Affiliations

Authors

Contributions

YF, DP, and YL carried out the studies and drafted the manuscript. LL and SO assisted with the establishment of the cell model. JL, LZ, and MA performed the statistical analysis. YF, DP, YL, LL, SO, JL, and LZ took part in the sample preparation and experimental analysis. YJ and MA designed the study. YJ led the study. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yueming Jiang.

Ethics declarations

Competing Interests

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, Y., Peng, D., Liang, Y. et al. Sodium P-aminosalicylic Acid Inhibits Manganese-Induced Neuroinflammation in BV2 Microglial Cells via NLRP3-CASP1 Inflammasome Pathway. Biol Trace Elem Res 199, 3423–3432 (2021). https://doi.org/10.1007/s12011-020-02471-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-020-02471-7

Keywords

Navigation