Log in

Dissolving Chitin by Novel Deep Eutectic Solvents for Effectively Enzymatic Hydrolysis

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Chitin is the most productive nitrogen-containing polysaccharide in nature with immense potential for transforming into a range of chemicals. However, its dense crystal structure poses a challenge for depolymerization, limiting its applications. To overcome these challenges, a novel series of deep eutectic solvents (DESs) based on benzyltrimethylammonium chloride (TMBAC) as the hydrogen bond acceptor was developed. These TMBAC-based DESs, in combination with lactic acid, oxalic acid, and malic acid as the hydrogen bond donor demonstrated efficient chitin dissolution, achieving a solubility of up to 12% and an 88% recovery rate of regenerated chitin. The regenerated chitin was characterized using XRD, FT-IR, SEM, and 13C CP-MAS NMR, which indicated the preservation of chitin’s chemical structure, a significant decrease in crystallinity, and a reduction in the molecular weight. Furthermore, the enzymatic hydrolysis efficiency of chitin was nearly doubled after treatment with TMBAC-based DESs, surpassing the effectiveness of untreated chitin. This approach holds promise for facilitating subsequent transformation and utilization of chitin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The data and materials are available from the corresponding author upon reasonable request.

References

  1. Ashokkumar, V., Venkatkarthick, R., Jayashree, S., Chuetor, S., Dharmaraj, S., Kumar, G., Chen, W.-H., & Ngamcharussrivichai, C. (2022). Recent advances in lignocellulosic biomass for biofuels and value-added bioproducts - a critical review. Bioresource Technology, 344, 126195.

    Article  CAS  PubMed  Google Scholar 

  2. Kumar, B., & Verma, P. (2021). Biomass-based biorefineries: An important archetype towards a circular economy. Fuel, 288, 119622.

    Article  CAS  Google Scholar 

  3. Antar, M., Lyu, D., Nazari, M., Shah, A., Zhou, X., & Smith, D. L. (2021). Biomass for a sustainable bioeconomy: An overview of world biomass production and utilization. Renewable and Sustainable Energy Reviews, 139, 110691.

    Article  CAS  Google Scholar 

  4. **g, Y., Guo, Y., **a, Q., Liu, X., & Wang, Y. (2019). Catalytic production of value-added chemicals and liquid fuels from lignocellulosic biomass. Chem, 5, 2520–2546.

    Article  CAS  Google Scholar 

  5. Chen, X., Song, S., Li, H., Gözaydın, G. k., Yan, N. (2021). Expanding the boundary of biorefinery: Organonitrogen chemicals from biomass. Accounts of Chemical Research, 54, 1711-1722.

  6. Hülsey, M. J. (2018). Shell biorefinery: A comprehensive introduction. Green Energy & Environment, 3, 318–327.

    Article  Google Scholar 

  7. Liu, Y., Stähler, C., Murphy, J. N., Furlong, B. J., & Kerton, F. M. (2017). Formation of a renewable amine and an alcohol via transformations of 3-acetamido-5-acetylfuran. ACS Sustainable Chemistry & Engineering, 5, 4916–4922.

    Article  CAS  Google Scholar 

  8. Nair, K. G., & Dufresne, A. (2003). Crab shell chitin whisker reinforced natural rubber nanocomposites. 1. Processing and swelling behavior. Biomacromolecules, 4, 657–665.

    Article  CAS  Google Scholar 

  9. Rinaudo, M. (2006). Chitin and chitosan: Properties and applications. Progress in Polymer Science, 31, 603–632.

    Article  CAS  Google Scholar 

  10. Beckham, G. T., & Crowley, M. F. (2011). Examination of the α-chitin structure and decrystallization thermodynamics at the nanoscale. The Journal of Physical Chemistry B, 115, 4516–4522.

    Article  CAS  PubMed  Google Scholar 

  11. Yan, N., & Chen, X. (2015). Don’t waste seafood waste. Nature, 524, 155–157.

    Article  CAS  PubMed  Google Scholar 

  12. Dai, J., Li, F., & Fu, X. (2020). Towards shell biorefinery: Advances in chemical-catalytic conversion of chitin biomass to organonitrogen chemicals. Chemsuschem, 13, 6498–6508.

    Article  CAS  PubMed  Google Scholar 

  13. Xu, B., Du, Z., Dai, J., Yang, R., Yang, D., Gu, X., Li, N., & Li, F. (2022). Progress in catalytic conversion of renewable chitin biomass to furan-derived platform compounds. Catalysts, 12, 653.

    Article  CAS  Google Scholar 

  14. Songsiriritthigul, C., Lapboonrueng, S., Pechsrichuang, P., Pesatcha, P., & Yamabhai, M. (2010). Expression and characterization of Bacillus licheniformis chitinase (ChiA), suitable for bioconversion of chitin waste. Bioresource Technology, 101, 4096–4103.

    Article  CAS  PubMed  Google Scholar 

  15. Mukherjee, S., Behera, P. K., & Madhuprakash, J. (2020). Efficient conversion of crystalline chitin to N-acetylglucosamine and N, N’-diacetylchitobiose by the enzyme cocktail produced by Paenibacillus sp. LS1. Carbohydrate Polymers, 250, 116889.

    Article  CAS  PubMed  Google Scholar 

  16. Mohan, K., Ganesan, A. R., Ezhilarasi, P. N., Kondamareddy, K. K., Rajan, D. K., Sathishkumar, P., Rajarajeswaran, J., & Conterno, L. (2022). Green and eco-friendly approaches for the extraction of chitin and chitosan: A review. Carbohydrate Polymers, 287, 119349.

    Article  CAS  PubMed  Google Scholar 

  17. Khajavian, M., Vatanpour, V., Castro-Muñoz, R., & Boczkaj, G. (2022). Chitin and derivative chitosan-based structures-preparation strategies aided by deep eutectic solvents: A review. Carbohydrate Polymers, 275, 118702.

    Article  CAS  PubMed  Google Scholar 

  18. Wang, J., Teng, C., & Yan, L. (2022). Applications of deep eutectic solvents in the extraction, dissolution, and functional materials of chitin: Research progress and prospects. Green Chemistry, 24, 552–564.

    Article  CAS  Google Scholar 

  19. Silva, S. S., Mano, J. F., & Reis, R. L. (2017). Ionic liquids in the processing and chemical modification of chitin and chitosan for biomedical applications. Green Chemistry, 19, 1208–1220.

    Article  CAS  Google Scholar 

  20. Shamshina, J. L. (2019). Chitin in ionic liquids: Historical insights into the polymer’s dissolution and isolation. A review. Green Chemistry, 21, 3974–3993.

    Article  CAS  Google Scholar 

  21. Maculewicz, J., Świacka, K., Stepnowski, P., Dołżonek, J., & Białk-Bielińska, A. (2022). Ionic liquids as potentially hazardous pollutants: Evidences of their presence in the environment and recent analytical developments. Journal of Hazardous Materials, 437, 129353.

    Article  CAS  PubMed  Google Scholar 

  22. Zhang, Q., De Oliveira Vigier, K., Royer, S., & Jérôme, F. (2012). Deep eutectic solvents: Syntheses, properties and applications. Chemical Society Reviews, 41, 7108.

    Article  CAS  PubMed  Google Scholar 

  23. Smith, E. L., Abbott, A. P., & Ryder, K. S. (2014). Deep eutectic solvents (DESs) and their applications. Chemical Reviews, 114, 11060–11082.

    Article  CAS  PubMed  Google Scholar 

  24. Abbott, A. P., Capper, G., Davies, D. L., Rasheed, R. K., Tambyrajah, V. (2003). Novel solvent properties of choline chloride/urea mixtures. Chemical Communications, 70–71.

  25. Chen, Y., & Mu, T. (2019). Application of deep eutectic solvents in biomass pretreatment and conversion. Green Energy & Environment, 4, 95–115.

    Article  Google Scholar 

  26. Kim, K. H., Dutta, T., Sun, J., Simmons, B., & Singh, S. (2018). Biomass pretreatment using deep eutectic solvents from lignin derived phenols. Green Chemistry, 20, 809–815.

    Article  CAS  Google Scholar 

  27. Sharma, M., Mukesh, C., Mondal, D., & Prasad, K. (2013). Dissolution of α-chitin in deep eutectic solvents. RSC Advances, 3, 18149.

    Article  CAS  Google Scholar 

  28. Vicente, F. A., Bradic, B., Novak, U., & Likozar, B. (2020). alpha-Chitin dissolution, N-deacetylation and valorization in deep eutectic solvents. Biopolymers, 111, e23351.

    Article  CAS  PubMed  Google Scholar 

  29. Yuan, Y., Hong, S., Lian, H., Zhang, K., & Liimatainen, H. (2020). Comparison of acidic deep eutectic solvents in production of chitin nanocrystals. Carbohydrate Polymers, 236, 116095.

    Article  CAS  PubMed  Google Scholar 

  30. Wang, X., Zhou, P., Lv, X., & Liang, Y. (2021). Insight into the structure-function relationships of the solubility of chitin /chitosan in natural deep eutectic solvents. Materials Today Communications, 27, 102374.

    Article  CAS  Google Scholar 

  31. Zhang, Y., Mu, M., Yang, Z., & Liu, X. (2022). Ultralong-chain ionic liquid surfactants derived from natural erucic acid. ACS Sustainable Chemistry & Engineering, 10, 2545–2555.

    Article  CAS  Google Scholar 

  32. Bureš, F. (2019). Quaternary ammonium compounds: Simple in structure, complex in application. Topics in Current Chemistry, 377, 14–34.

    Article  PubMed  Google Scholar 

  33. Guo, Z., Zhang, Q., You, T., Zhang, X., Xu, F., & Wu, Y. (2019). Short-time deep eutectic solvent pretreatment for enhanced enzymatic saccharification and lignin valorization. Green Chemistry, 21, 3099–3108.

    Article  CAS  Google Scholar 

  34. **e, J., Xu, J., Zhang, Z., Wang, B., Zhu, S., Li, J., & Chen, K. (2023). New ternary deep eutectic solvents with cycle performance for efficient pretreated radiata pine forming to lignin containing cellulose nanofibrils. Chemical Engineering Journal, 451, 138591.

    Article  CAS  Google Scholar 

  35. **e, J., Chen, J., Cheng, Z., Zhu, S., & Xu, J. (2021). Pretreatment of pine lignocelluloses by recyclable deep eutectic solvent for elevated enzymatic saccharification and lignin nanoparticles extraction. Carbohydrate Polymers, 269, 118321.

    Article  CAS  PubMed  Google Scholar 

  36. Chen, X., Gao, Y., Wang, L., Chen, H., & Yan, N. (2015). Effect of treatment methods on chitin structure and its transformation into nitrogen-containing chemicals. ChemPlusChem, 80, 1565–1572.

    Article  CAS  PubMed  Google Scholar 

  37. Hong, S., Yuan, Y., Yang, Q., Zhu, P., & Lian, H. (2018). Versatile acid base sustainable solvent for fast extraction of various molecular weight chitin from lobster shell. Carbohydrate Polymers, 201, 211–217.

    Article  CAS  PubMed  Google Scholar 

  38. Chen, L., Zhou, Y., Qu, M., Zhao, Y., & Yang, Q. (2014). Fully deacetylated chitooligosaccharides act as efficient glycoside hydrolase family 18 chitinase inhibitors. Journal of Biological Chemistry, 289, 17932–17940.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhang, H., Zhao, Y., Cao, H., Mou, G., & Yin, H. (2015). Expression and characterization of a lytic polysaccharide monooxygenase from Bacillus thuringiensis. International Journal of Biological Macromolecules, 79, 72–75.

    Article  CAS  PubMed  Google Scholar 

  40. Hansen, B. B., Spittle, S., Chen, B., Poe, D., Zhang, Y., Klein, J. M., Horton, A., Adhikari, L., Zelovich, T., Doherty, B. W., Gurkan, B., Maginn, E. J., Ragauskas, A., Dadmun, M., Zawodzinski, T. A., Baker, G. A., Tuckerman, M. E., Savinell, R. F., & Sangoro, J. R. (2020). Deep eutectic solvents: A review of fundamentals and applications. Chemical Reviews, 121, 1232–1285.

    Article  PubMed  Google Scholar 

  41. Abbott, A. P., Boothby, D., Capper, G., Davies, D. L., & Rasheed, R. K. (2004). Deep eutectic solvents formed between choline chloride and carboxylic acidsversatile alternatives to ionic liquids. Journal of the American Chemical Society, 126, 9142–9147.

    Article  CAS  PubMed  Google Scholar 

  42. Avalos, M., Babiano, R., Cintas, P., Jiménez, J. L., & Palacios, J. C. (2006). Greener media in chemical synthesis and processing. Angewandte Chemie International Edition, 45, 3904–3908.

    Article  CAS  PubMed  Google Scholar 

  43. Ibrahim, R. K., Hayyan, M., AlSaadi, M. A., Ibrahim, S., Hayyan, A., & Hashim, M. A. (2019). Physical properties of ethylene glycol-based deep eutectic solvents. Journal of Molecular Liquids, 276, 794–800.

    Article  CAS  Google Scholar 

  44. Kuddushi, M., Nangala, G. S., Rajput, S., Ijarda, S. P., & Malek, N. I. (2019). Understanding the peculiar effect of water on the physicochemical properties of choline chloride based deep eutectic solvents theoretically and experimentally. Journal of Molecular Liquids, 278, 607–615.

    Article  CAS  Google Scholar 

  45. Hong, S., Yuan, Y., Zhang, K., Lian, H., & Liimatainen, H. (2020). Efficient hydrolysis of chitin in a deep eutectic solvent synergism for production of chitin nanocrystals. Nanomaterials, 10, 869.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhang, J., Xu, W.-R., & Zhang, Y.-C. (2022). Facile production of chitin from shrimp shells using a deep eutectic solvent and acetic acid. RSC Advances, 12, 22631–22638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Li, Z., Liu, C., Hong, S., Lian, H., Mei, C., Lee, J., Wu, Q., Hubbe, M. A., & Li, M. C. (2022). Recent advances in extraction and processing of chitin using deep eutectic solvents. Chemical Engineering Journal, 446, 136953.

    Article  CAS  Google Scholar 

  48. Gbenebor, O. P., Akpan, E. I., & Adeosun, S. O. (2017). Thermal, structural and acetylation behavior of snail and periwinkle shells chitin. Progress in Biomaterials, 6, 97–111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhang, J., & Yan, N. (2017). Production of glucosamine from chitin by co-solvent promoted hydrolysis and deacetylation. ChemCatChem, 9, 2790–2796.

    Article  CAS  Google Scholar 

  50. Cárdenas, G., Cabrera, G., Taboada, E., & Miranda, S. P. (2004). Chitin characterization by SEM, FTIR, XRD, and13C cross polarization/mass angle spinning NMR. Journal of Applied Polymer Science, 93, 1876–1885.

    Article  Google Scholar 

  51. Jang, M. K., Kong, B. G., Jeong, Y. I., Lee, C. H., & Nah, J. W. (2004). Physicochemical characterization of α-chitin, β-chitin, and γ-chitin separated from natural resources. Journal of Polymer Science Part A: Polymer Chemistry, 42, 3423–3432.

    Article  CAS  Google Scholar 

  52. Feng, M., Lu, X., Zhang, J., Li, Y., Shi, C., Lu, L., & Zhang, S. (2019). Direct conversion of shrimp shells to O-acylated chitin with antibacterial and anti-tumor effects by natural deep eutectic solvents. Green Chemistry, 21, 87–98.

    Article  CAS  Google Scholar 

  53. Mukesh, C., Mondal, D., Sharma, M., & Prasad, K. (2014). Choline chloride–thiourea, a deep eutectic solvent for the production of chitin nanofibers. Carbohydrate Polymers, 103, 466–471.

    Article  CAS  PubMed  Google Scholar 

  54. Kaya, M., Baublys, V., Šatkauskienė, I., Akyuz, B., Bulut, E., & Tubelytė, V. (2015). First chitin extraction from Plumatella repens (Bryozoa) with comparison to chitins of insect and fungal origin. International Journal of Biological Macromolecules, 79, 126–132.

    Article  CAS  PubMed  Google Scholar 

  55. Kaya, M., Mujtaba, M., Bulut, E., Akyuz, B., Zelencova, L., & Sofi, K. (2015). Fluctuation in physicochemical properties of chitins extracted from different body parts of honeybee. Carbohydrate Polymers, 132, 9–16.

    Article  CAS  PubMed  Google Scholar 

  56. Pohling, J., Hawboldt, K., & Dave, D. (2022). Comprehensive review on pre-treatment of native, crystalline chitin using non-toxic and mechanical processes in preparation for biomaterial applications. Green Chemistry, 24, 6790–6809.

    Article  CAS  Google Scholar 

  57. Zhou, N., Yang, P., Chen, J., Wei, G., Wang, C., Zhang, A., Chen, K., & Ouyang, P. (2022). Effect of organic solvents treatment on structure of chitin and its enzymatic hydrolysis. Polymer Degradation and Stability, 198, 109654.

    Article  CAS  Google Scholar 

  58. Beaney, P. D., Gan, Q., Magee, T. R. A., Healy, M., & Lizardi-Mendoza, J. (2007). Modification of chitin properties for enzymatic deacetylation. Journal of Chemical Technology & Biotechnology, 82, 165–173.

    Article  CAS  Google Scholar 

  59. Poshina, D. N., Raik, S. V., Poshin, A. N., & Skorik, Y. A. (2018). Accessibility of chitin and chitosan in enzymatic hydrolysis: A review. Polymer Degradation and Stability, 156, 269–278.

    Article  CAS  Google Scholar 

  60. Li, J., Huang, W.-C., Gaoa, L., Sun, J., Liu, Z., & Mao, X. (2019). Efficient enzymatic hydrolysis of ionic liquid pretreated chitin and its dissolution mechanism. Carbohydrate Polymers, 211, 329–335.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was financially supported by Dalian Science and Technology Innovation Fund (Grant Nos. 2022JJ12SN051, 2020JJ25CY017), The Key Science and Technology Planning Project of China Tobacco Company Yunnan branch (2021530000241032), Key Laboratory of Se-enriched Products Development and Quality Control, Ministry of Agriculture and Rural Affairs/National-Local Joint Engineering Laboratory of Se-enriched Food Development (Grant No. Se-2020C02), and Natural Science Foundation Liaoning Province (Grant No. 2021-MS-018).

Author information

Authors and Affiliations

Authors

Contributions

Qishun Liu: conceptualization, investigation, writing—original draft preparation, funding acquisition. Jia Che: investigation, visualization. Yu Yu: investigation, visualization. Deyu Chu: investigation, visualization. Zhang Huiyan: investigation, visualization. Fuyun Zhang: writing—reviewing and editing. Miao Zhao: writing—reviewing and editing. Heng Yin: writing—reviewing and editing, funding acquisition, supervision.

Corresponding authors

Correspondence to Qishun Liu or Heng Yin.

Ethics declarations

Ethics Approval

Ethics approval was not required for this study.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Q., Che, J., Yu, Y. et al. Dissolving Chitin by Novel Deep Eutectic Solvents for Effectively Enzymatic Hydrolysis. Appl Biochem Biotechnol (2024). https://doi.org/10.1007/s12010-024-04972-w

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12010-024-04972-w

Keywords

Navigation