Log in

Effective Degradation of Brewer Spent Grains by a Novel Thermostable GH10 Xylanase

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Brewer spent grains (BSGs) are one of the most abundant by-products in brewing industry. Due to microbiological instability and high perishability, the efficient degradation of BSGs is of environmental and economic importance. Streptomyces sp. F-3 could grow in the medium with BSGs as the only carbon and nitrogen source. Proteome mass spectrometry revealed that a GH10 xylanase SsXyn10A could be secreted in large quantities. SsXyn10A showed optimum activity at pH 7.0 and 60 °C. SsXyn10A exhibited excellent thermostability which retained approximately 100% and 58% after incubation for 5 h at 50 and 60 °C. SsXyn10A displayed high activity to beechwood xylan (BX) and wheat arabinoxylan (WAX). SsXyn10A is active against xylotetracose (X4), xylopentose (X5), and xylohexose (X6) to produce main products xylobiose (X2) and xylotriose (X3). Ssxyn10A showed synergistic effects with commercial cellulase on BSGs hydrolyzing into soluble sugar. In addition, the steam explosion pretreatment of BSGs as the substrate produced twice as much reducing sugar as the degradation of the original substrate. This study will contribute to efficient utilization of BSGs and provide a thermostable GH10 xylanase which has potential application in biomass hydrolysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data generated or analyzed during this study are included in this published article and its supplementary information files. Further datasets used and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Puligundla, P., & Mok, C. (2021). Food Science and Biotechnology, 30, 341–353.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bianco, A., Budroni, M., Zara, S., Mannazzu, I., Fancello, F., et al. (2020). Applied Microbiology and Biotechnology, 104, 8661–8678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Akermann, A., Weiermuller, J., Christmann, J., Guirande, L., Glaser, G., et al. (2020). Engineering in Life Sciences, 20, 168–180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gbenebor, O. P., Olanrewaju, O. A., Usman, M. A., & Adeosun, S. O. (2023). Polymers (Basel), 15.

  5. Rahman, M. J., Malunga, L. N., Eskin, M., Eck, P., Thandapilly, S. J., et al. (2021). Frontiers in Nutrition, 8, 634519.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Merten, D., Erman, L., Marabelli, G. P., Leners, B., Ney, Y., et al. (2022). Food & Function, 13, 5327–5342.

    Article  CAS  Google Scholar 

  7. Ikram, S., Huang, L., Zhang, H., Wang, J., & Yin, M. (2017). Journal of Food Science, 82, 2232–2242.

    Article  CAS  PubMed  Google Scholar 

  8. Leite, P., Silva, C., Salgado, J. M., & Belo, I. (2019). Industrial Crops and Products, 137, 315–322.

    Article  CAS  Google Scholar 

  9. Hassan, S. S., Ravindran, R., Jaiswal, S., Tiwari, B. K., Williams, G. A., et al. (2020). Waste Management, 105, 240–247.

    Article  CAS  PubMed  Google Scholar 

  10. Pathania, S., Sharma, S., & Kumari, K. (2018). Indian Journal of Natural Products and Resources, 9, 70–74.

    CAS  Google Scholar 

  11. Lao, E. J., Dimoso, N., Raymond, J., & Mbega, E. R. (2020). Tropical Animal Health and Production, 52, 461–472.

    Article  PubMed  Google Scholar 

  12. Sajib, M., Falck, P., Sardari, R. R. R., et al. (2018). Journal of Biotechnology, 268, 61–70.

    Article  CAS  PubMed  Google Scholar 

  13. Amorim, C., Silverio, S. C., Silva, S. P., Coelho, E., Coimbra, M. A., et al. (2018). Carbohydrate Polymers, 199, 546–554.

    Article  CAS  PubMed  Google Scholar 

  14. Amorim, C., Silverio, S. C., Prather, K. L. J., & Rodrigues, L. R. (2019). Biotechnology Advances, 37, 107397.

    Article  CAS  PubMed  Google Scholar 

  15. Berger, K., Burleigh, S., Lindahl, M., Bhattacharya, A., Patil, P., et al. (2021). Journal of Agricultural and Food Chemistry, 69, 3617–3625.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gong, W., Zhang, H., Tian, L., Liu, S., Wu, X., et al. (2016). Electrophoresis, 37, 1640–1650.

    Article  CAS  PubMed  Google Scholar 

  17. Paes, G., Berrin, J. G., & Beaugrand, J. (2012). Biotechnology Advances, 30, 564–592.

    Article  CAS  PubMed  Google Scholar 

  18. Yang, Y., Yang, J. S., Wang, R. N., Liu, J. W., Zhang, Y., et al. (2019). Microbial Cell Factories, 18, 159.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Wu, X., Shi, Z., Tian, W., Liu, M., Huang, S., et al. (2022). Frontiers in Bioengineering and Biotechnology, 10, 939550.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Corchado-Lopo, C., Martínez-Avila, O., Marti, E., Llimós, J., Busquets, A. M., et al. (2021). New Biotechnology, 62, 60–67.

    Article  CAS  PubMed  Google Scholar 

  21. Kavalopoulos, M., Stoumpou, V., Christofi, A., Mai, S., Barampouti, E. M., et al. (2021). Environmental Pollution, 270, 116069.

    Article  CAS  PubMed  Google Scholar 

  22. Parchami, M., Ferreira, J. A., & Taherzadeh, M. J. (2021). Bioresource Technology, 337, 125409.

    Article  CAS  PubMed  Google Scholar 

  23. Weiermuller, J., Akermann, A., Laudensack, W., Chodorski, J., Blank, L. M., et al. (2021). Bioresource Technology, 336, 125262.

    Article  PubMed  Google Scholar 

  24. Ravindran, R., Jaiswal, S., Abu-Ghannam, N., & Jaiswal, A. K. (2018). Bioresource Technology, 248, 272–279.

    Article  CAS  PubMed  Google Scholar 

  25. Ikram, S., Zhang, H., Ahmed, M. S., & Wang, J. (2020). Journal of Food Science, 85, 1045–1059.

    Article  CAS  PubMed  Google Scholar 

  26. Montipó, S., Ballesteros, I., Fontana, R. C., Liu, S., Martins, A. F., et al. (2018). Bioresource Technology, 249, 1017–1024.

    Article  PubMed  Google Scholar 

  27. Ma, Q., Gao, X., Bi, X., **a, M., & Wang, M. (2021). Biomass and Bioenergy, 145, 105967.

    Article  CAS  Google Scholar 

  28. Carvalho, A. F. A., Marcondes, W. F., de Oliva Neto, P., et al. (2018). Bioresource Technology, 250, 221–229.

    Article  CAS  PubMed  Google Scholar 

  29. Teng, C., Yan, Q., Jiang, Z., Fan, G., & Shi, B. (2010). Bioresource Technology, 101(19), 7679–7682.

    Article  CAS  PubMed  Google Scholar 

  30. You, S., Li, J., Zhang, F., Bai, Z. Y., Shittu, S., et al. (2021). Bioresource Technology, 342, 125962.

    Article  CAS  PubMed  Google Scholar 

  31. Sun, X., Li, Y., Tian, Z., Qian, Y., Zhang, H., et al. (2019). Biotechnology for Biofuels, 12, 136.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Sun, X., Meng, J., Liu, S., Zhang, H., & Wang, L. (2016). Genome Announcements, 4, e00780–e00716.

    PubMed  PubMed Central  Google Scholar 

  33. Shi, Z., Gong, W., Zhang, L., Dai, L., Chen, G., et al. (2019). Applied Biochemistry and Biotechnology, 187, 1515–1538.

    Article  CAS  PubMed  Google Scholar 

  34. Zhou, J. Y., Schepmoes, A. A., Zhang, X., Moore, R. J., Monroe, M. E., et al. (2010). Journal of Proteome Research, 9, 5698–5704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hu, G., Heitmann, J. A., Jr., & Rojas, O. J. (2009). Analytical Chemistry, 81, 1872–1880.

    Article  CAS  PubMed  Google Scholar 

  36. Kim, D. Y., Lee, S. H., Lee, M. J., Cho, H. Y., Lee, J. S., et al. (2018). International Journal of Biological Macromolecules, 106, 620–628.

    Article  CAS  PubMed  Google Scholar 

  37. Alokika, & Singh, B. (2019). Applied Microbiology and Biotechnology, 103, 8763–8784.

    Article  CAS  PubMed  Google Scholar 

  38. Wang, K., Cao, R., Wang, M., Lin, Q., Zhan, R., et al. (2019). Biotechnology for Biofuels, 12, 48.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Xue, X., Wang, R., Tu, T., Shi, P., Ma, R., et al. (2015). Applied and Environmental Microbiology, 81, 3823–3833.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wu, X., Tian, Z., Jiang, X., Zhang, Q., & Wang, L. (2018). Applied Microbiology and Biotechnology, 102, 249–260.

    Article  CAS  PubMed  Google Scholar 

  41. Sepulchro, A. G. V., Pellegrini, V. O. A., Briganti, L., de Araujo, E. A., de Araujo, S. S., et al. (2020). Carbohydrate Polymers, 247, 116714.

    Article  CAS  PubMed  Google Scholar 

  42. Vacilotto, M. M., Pellegrini, V. O. A., Sepulchro, A. G. V., Capetti, C. C. M., Curvelo, A. A. S., et al. (2022). Carbohydrate Polymers, 275, 118684.

    Article  CAS  PubMed  Google Scholar 

  43. Wang, X., Huang, H., **e, X., Ma, R., Bai, Y., et al. (2016). Bioresource Technology, 222, 277–284.

    Article  CAS  PubMed  Google Scholar 

  44. Song, H. T., Gao, Y., Yang, Y. M., **ao, W. J., Liu, S. H., et al. (2016). Bioresource Technology, 219, 710–715.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was funded by the Open Research Fund of State Key Laboratory of Biological Fermentation Engineering of Beer (K202005), The National Natural Science Foundation of China (32100022), and the Key Research and Develop Program of Shandong Province (2020CXGC010601).

Author information

Authors and Affiliations

Authors

Contributions

ML performed the experiments and analyzed the data. SH and PY analyzed the data. HY and JY modified the article. XW conceived the study design and wrote the manuscript. LW edited the paper. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Junhong Yu or **uyun Wu.

Ethics declarations

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of authors.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 2520 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, M., Huang, S., Yan, P. et al. Effective Degradation of Brewer Spent Grains by a Novel Thermostable GH10 Xylanase. Appl Biochem Biotechnol (2023). https://doi.org/10.1007/s12010-023-04779-1

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12010-023-04779-1

Keywords

Navigation