Log in

ceRNA Network Analysis Reveals Potential Key miRNAs and Target Genes in COVID-19-Related Chronic Obstructive Pulmonary Disease

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The continued spread of SARS-CoV-2 has presented unprecedented obstacles to the worldwide public health system. Especially, individuals with chronic obstructive pulmonary disease (COPD) are at a heightened risk of contracting SARS-CoV-2 infection due to their pre-existing respiratory symptoms that are not well-managed. However, the viral mechanism of affecting the expression of host genes, COPD progression, and prognosis is not clear yet.

This study integrated the differential expression information of COPD patients and then calculated the correlation between mRNAs and miRNAs to construct a COPD-specific ceRNA network. The DEGs of individuals with SARS-CoV-2 infection and anticipated miRNAs and their targets were analyzed in 9 SARS-CoV-2 sequences from different geographic locations. Furthermore, combining the experimentally validated miRNAs and genes, the regulatory miRNA-mRNA relationships were identified. All the regulatory relationships were integrated into the COPD-specific network and the network modules were explored to get insight into the functional mechanism of SARS-CoV-2 infection in COPD patients.

A higher proportion of DEGs compete with the same miRNA suggesting a higher expression of genes in the COPD-specific ceRNA network. Hsa-miR-21-3p is the largest connected point in the network, but the proportion of genes upregulated by hsa-miR-21-3p is low (P = 0.1406). This indicates that the regulatory relationship of competitive inhibition has little effect on has-miR-21, and the high expression pattern is a poor prognostic factor in COPD. Hsa-miR-15a-5p is the most significant miRNA with the highest proportion of DEGs. And ANXA2P3 is the only gene in the COPD ceRNA network that interferes with hsa-miR-15a-5p. In addition, we found that has-miR-1184- and has-miR-99-cored modules were significant, and genes ZDHHC18, PCGF3, and KIAA0319L interacting with them were all associated with COPD prognosis, and high expression of these genes could lead to poor prognosis in COPD.

The key regulators such as miR-21, miR-15a, ANXA2P3, ZDHHC18, PCGF3, and KIAA0319L can be used as prognostic biomarkers for early intervention in COPD with SARS-CoV-2 infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

ceRNA:

Competing endogenous ribonucleic acid

COPD:

Chronic obstructive pulmonary disease

SARS-CoV-2:

Severe acquired respiratory syndrome coronavirus 2

miRNA:

MicroRNA

DEGs:

Differentially expressed genes

References

  1. GBD 2017 Causes of Death Collaborators. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: A systematic analysis for the Global Burden of Disease Study 2017 [published correction appears in Lancet 2019 Jun 22;393(10190):e44] [published correction appears in Lancet. 2018 Nov 17;392(10160):2170]. Lancet. 2018;392(10159):1736–1788

  2. Labaki, W. W., & Rosenberg, S. R. (2020). Chronic obstructive pulmonary disease. Annals of Internal Medicine, 173(3), ITC17–ITC32. https://doi.org/10.7326/AITC202008040

    Article  PubMed  Google Scholar 

  3. Cho, M. H., McDonald, M. L., Zhou, X., et al. (2014). Risk loci for chronic obstructive pulmonary disease: A genome-wide association study and meta-analysis. The Lancet Respiratory Medicine, 2(3), 214–225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hobbs, B. D., de Jong, K., Lamontagne, M., et al. (2017). Genetic loci associated with chronic obstructive pulmonary disease overlap with loci for lung function and pulmonary fibrosis. Nature Genetics, 49(3), 426–432.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sakornsakolpat, P., Prokopenko, D., Lamontagne, M., et al. (2019). Genetic landscape of chronic obstructive pulmonary disease identifies heterogeneous cell-type and phenotype associations. Nature Genetics, 51(3), 494–505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Manichaikul, A., Hoffman, E. A., Smolonska, J., et al. (2014). Genome-wide study of percent emphysema on computed tomography in the general population. The Multi-Ethnic Study of Atherosclerosis Lung/SNP Health Association Resource Study. American Journal of Respiratory and Critical Care Medicine, 189(4), 408–418.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Boueiz, A., Lutz, S. M., Cho, M. H., et al. (2017). Genome-wide association study of the genetic determinants of emphysema distribution. American Journal of Respiratory and Critical Care Medicine, 195(6), 757–771.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wittstatt, J., Weider, M., Wegner, M., & Reiprich, S. (2020). MicroRNA miR-204 regulates proliferation and differentiation of oligodendroglia in culture. Glia, 68(10), 2015–2027.

    Article  PubMed  Google Scholar 

  9. Wu, B., Liu, G., **, Y., et al. (2020). miR-15b-5p promotes growth and metastasis in breast cancer by targeting HPSE2. Frontiers in Oncology, 10, 108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Devadoss, D., Long, C., Langley, R. J., et al. (2019). Long noncoding transcriptome in chronic obstructive pulmonary disease. American Journal of Respiratory Cell and Molecular Biology, 61(6), 678–688.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gu, W., Yuan, Y., Wang, L., et al. (2019). Long non-coding RNA TUG1 promotes airway remodelling by suppressing the miR-145-5p/DUSP6 axis in cigarette smoke-induced COPD. Journal of Cellular and Molecular Medicine, 23(11), 7200–7209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Khailany, R. A., Safdar, M., & Ozaslan, M. (2020). Genomic characterization of a novel SARS-CoV-2. Gene Rep., 19, 100682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhou, P., Yang, X. L., Wang, X. G., et al. (2020). A pneumonia outbreak associated with a new coronavirus of probable bat origin [published correction appears in Nature. 2020 Dec; 588(7836):E6]. Nature, 579(7798), 270–273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chen, B., Tian, E. K., He, B., et al. (2020). Overview of lethal human coronaviruses. Signal Transduction and Targeted Therapy, 5(1), 89.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Evans, S. E., Tseng, C. K., Scott, B. L., Höök, A. M., & Dickey, B. F. (2020). Inducible epithelial resistance against coronavirus pneumonia in mice. American Journal of Respiratory Cell and Molecular Biology, 63(4), 540–541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kincaid, R. P., & Sullivan, C. S. (2012). Virus-encoded microRNAs: An overview and a look to the future. PLoS Pathogens, 8(12), e1003018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rastogi, M., Pandey, N., Shukla, A., & Singh, S. K. (2020). SARS coronavirus 2: From genome to infectome. Respiratory Research, 21(1), 318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Leung, J. M., Yang, C. X., Tam, A., et al. (2020). ACE-2 expression in the small airway epithelia of smokers and COPD patients: Implications for COVID-19. European Respiratory Journal, 55(5), 2000688.

    Article  CAS  PubMed  Google Scholar 

  19. Barrett, T., Wilhite, S. E., Ledoux, P., et al. (2013). NCBI GEO: Archive for functional genomics data sets–update. Nucleic Acids Research, 41(Database issue), 991–995.

    Google Scholar 

  20. Kozomara, A., Birgaoanu, M., & Griffiths-Jones, S. (2019). miRBase: From microRNA sequences to function. Nucleic Acids Research, 47(D1), D155–D162.

    Article  CAS  PubMed  Google Scholar 

  21. Stelzer, G., Rosen, N., Plaschkes, I., et al. (2016). The GeneCards suite: From gene data mining to disease genome sequence analyses. Current Protocols in Bioinformatics, 54, 1.30.1-1.30.33.

    Article  PubMed  Google Scholar 

  22. Hsu, S. D., Tseng, Y. T., Shrestha, S., et al. (2014). miRTarBase update 2014: An information resource for experimentally validated miRNA-target interactions. Nucleic Acids Research, 42(1), 78–85.

    Article  Google Scholar 

  23. Larkin, M. A., Blackshields, G., Brown, N. P., et al. (2007). Clustal W and Clustal X version 2.0. Bioinformatics, 23(21), 2947–2948.

    Article  CAS  PubMed  Google Scholar 

  24. Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35(6), 1547–1549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lukasik, A., Wójcikowski, M., & Zielenkiewicz, P. (2016). Tools4miRs - One place to gather all the tools for miRNA analysis. Bioinformatics, 32(17), 2722–2724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fabian, M. R., Sonenberg, N., & Filipowicz, W. (2010). Regulation of mRNA translation and stability by microRNAs. Annual Review of Biochemistry, 79, 351–379.

    Article  CAS  PubMed  Google Scholar 

  27. Thomson, D. W., & Dinger, M. E. (2016). Endogenous microRNA sponges: Evidence and controversy. Nature Reviews Genetics, 17(5), 272–283.

    Article  CAS  PubMed  Google Scholar 

  28. Gao, Z., Liu, H., Shi, Y., Yin, L., Zhu, Y., & Liu, R. (2019). Identification of cancer stem cell molecular markers and effects of hsa-miR-21-3p on stemness in esophageal squamous cell carcinoma. Cancers (Basel), 11(4), 518.

    Article  CAS  PubMed  Google Scholar 

  29. He, S., Sun, S., Lu, J., et al. (2021). The effects of the miR-21/SMAD7/TGF-β pathway on Th17 cell differentiation in COPD. Science and Reports, 11(1), 6338.

    Article  CAS  Google Scholar 

  30. Kim, R. Y., Sunkara, K. P., Bracke, K. R., et al. (2021). A microRNA-21-mediated SATB1/S100A9/NF-κB axis promotes chronic obstructive pulmonary disease pathogenesis. Science Translational Medicine, 13(621), eaav7223.

    Article  CAS  PubMed  Google Scholar 

  31. Lu, J., **e, L., & Sun, S. (2021). The inhibitor miR-21 regulates macrophage polarization in an experimental model of chronic obstructive pulmonary disease. Tobacco Induced Diseases, 19, 69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Xu, H., Ling, M., Xue, J., et al. (2018). Exosomal microRNA-21 derived from bronchial epithelial cells is involved in aberrant epithelium-fibroblast cross-talk in COPD induced by cigarette smoking. Theranostics, 8(19), 5419–5433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Drake, J., McMichael, G. O., Vornholt, E. S., et al. (2020). Assessing the role of long noncoding RNA in nucleus accumbens in subjects with alcohol dependence. Alcoholism, Clinical and Experimental Research, 44(12), 2468–2480.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Qian, Y., Mao, Z. D., Shi, Y. J., Liu, Z. G., Cao, Q., & Zhang, Q. (2018). Comprehensive analysis of miRNA-mRNA-lncRNA networks in non-smoking and smoking patients with chronic obstructive pulmonary disease. Cellular Physiology and Biochemistry, 50(3), 1140–1153.

    Article  CAS  PubMed  Google Scholar 

  35. Ju, C. R., **a, X. Z., & Chen, R. C. (2007). Expressions of tumor necrosis factor-converting enzyme and ErbB3 in rats with chronic obstructive pulmonary disease. Chinese Med J-Peking, 120(17), 1505–1510.

    Article  CAS  Google Scholar 

  36. Yu, H., Li, Q., Kolosov, V. P., Perelman, J. M., & Zhou, X. (2011). Regulation of cigarette smoke-induced mucin expression by neuregulin1β/ErbB3 signalling in human airway epithelial cells. Basic & Clinical Pharmacology & Toxicology, 109(1), 63–72.

    Article  CAS  Google Scholar 

  37. Nouws, J., Wan, F., Finnemore, E., et al. (2021). MicroRNA miR-24-3p reduces DNA damage responses, apoptosis, and susceptibility to chronic obstructive pulmonary disease. JCI Insight., 6(2), e134218.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Hu, Y., Cheng, Y., Jiang, X., et al. (2021). PCGF3 promotes the proliferation and migration of non-small cell lung cancer cells via the PI3K/AKT signaling pathway. Experimental Cell Research, 400(2), 112496.

    Article  CAS  PubMed  Google Scholar 

  39. Chen, Q., Zhang, H., Zhang, J., et al. (2021). miR-210-3p promotes lung cancer development and progression by modulating USF1 and PCGF3. Oncotargets and Therapy, 14, 3687–3700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhu, M., Ye, M., Wang, J., Ye, L., & **, M. (2020). Construction of potential miRNA-mRNA regulatory network in COPD plasma by bioinformatics analysis. International Journal of Chronic Obstructive Pulmonary Disease, 15, 2135–2145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. **e, T. A., Han, M. Y., Su, X. R., Li, H. H., Chen, J. C., & Guo, X. G. (2020). Identification of Hub genes associated with infection of three lung cell lines by SARS-CoV-2 with integrated bioinformatics analysis. Journal of Cellular and Molecular Medicine, 24(20), 12225–12230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. García-Expósito, L., Barroso-González, J., Puigdomènech, I., Machado, J. D., Blanco, J., & Valenzuela-Fernández, A. (2011). HIV-1 requires Arf6-mediated membrane dynamics to efficiently enter and infect T lymphocytes. Molecular Biology of the Cell, 22(8), 1148–1166.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Haqshenas, G., & Doerig, C. (2019). Targeting of host cell receptor tyrosine kinases by intracellular pathogens. Science Signaling, 12(599), eaau9894.

    Article  CAS  PubMed  Google Scholar 

  44. Soroceanu, L., Akhavan, A., & Cobbs, C. S. (2008). Platelet-derived growth factor-alpha receptor activation is required for human cytomegalovirus infection. Nature, 455(7211), 391–395.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are thankful to Dr. Lindong Yuan, for critically editing the current manuscript.

Funding

This work was funded by the 2021 Annual Science and Technology Development Plan of Shandong Geriatric Society (LKJGG2021W070) and Scientific Research Fund Project of Hebei Provincial Health Commission (20231071).

Author information

Authors and Affiliations

Authors

Contributions

LY leads the study design and the overall progress. LZ performed the COPD-related data collection and analysis. ZZ performed the COPD-related data collection and analysis. XJ performed the COPD-related data collection and analysis. TY mainly taken part in the SARS-CoV-2 sequences retrieving and phylogenetic analysis. ZG mainly taken part in the SARS-CoV-2 sequences retrieving and phylogenetic analysis. LY wrote and polished the manuscripts. TY wrote and polished the manuscripts. ZG wrote and polished the manuscripts.

Corresponding author

Correspondence to Lindong Yuan.

Ethics declarations

Ethics Approval and Consent to Participate

The study was reviewed and approved by the National Center for Health Statistics Ethics Review Board (Approval Number: 20220611). All authors have their consent to participate.

Consent for Publication

All authors have their consent to publish their work.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Jia, X., Zhang, Z. et al. ceRNA Network Analysis Reveals Potential Key miRNAs and Target Genes in COVID-19-Related Chronic Obstructive Pulmonary Disease. Appl Biochem Biotechnol 196, 4303–4316 (2024). https://doi.org/10.1007/s12010-023-04773-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-023-04773-7

Keywords

Navigation