Log in

Emerging Trends in Zinc Ferrite Nanoparticles for Biomedical and Environmental Applications

  • Review Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Over the last few decades, the application of nanoparticles (NPs) gained immense attention towards environmental and biomedical applications. NPs are ultra-small particles having size ranges from 1 to 100 nm. NPs loaded with therapeutic or imaging compounds have proved a versatile approach towards healthcare improvements. Among various inorganic NPs, zinc ferrite (ZnFe2O4) NPs are considered as non-toxic and having an improved drug delivery characteristics . Several studies have reported broader applications of ZnFe2O4 NPs for treating carcinoma and various infectious diseases. Additionally, these NPs are beneficial for reducing organic and inorganic environmental pollutants. This review discusses about various methods to fabricate ZnFe2O4 NPs and their physicochemical properties. Further, their biomedical and environmental applications have also been explored comprehensively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and materials

The data will be available based on a request.

References

  1. Nagaich, U., Gulati, N., & Chauhan, S. (2016). Antioxidant and Antibacterial Potential of Silver Nanoparticles: Biogenic Synthesis Utilizing Apple Extract. Journal of Pharmaceutics, 2016, 1–8. https://doi.org/10.1155/2016/7141523

    Article  CAS  Google Scholar 

  2. Patra, J. K., Das, G., Fraceto, L. F., Campos, E. V. R., Rodriguez-Torres, M. del P., Acosta-Torres, L. S., Diaz-Torres, L. A., Grillo, R., Swamy, M. K., Sharma, S., Habtemariam, S., & Shin, H.-S. (2018). Nano based drug delivery systems: recent developments and future prospects. Journal of Nanobiotechnology, 16, 71. https://doi.org/10.1186/s12951-018-0392-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Abo-Zalam, H. B., El-Denshary, E. S., Abdelsalam, R. M., Khalil, I. A., Khattab, M. M., & Hamzawy, M. A. (2021). Therapeutic advancement of simvastatin-loaded solid lipid nanoparticles (SV-SLNs) in treatment of hyperlipidemia and attenuating hepatotoxicity, myopathy and apoptosis: Comprehensive study. Biomedicine & Pharmacotherapy., 139, 111494. https://doi.org/10.1016/j.biopha.2021.111494.H.B

    Article  CAS  Google Scholar 

  4. Chhikara, B. S. (2017). Current trends in nanomedicine and nanobiotechnology research. Journal of Materials NanoScience, 4, 19–24.

    Google Scholar 

  5. Venugopal, K., Ahmad, H., Manikandan, E., Arul, K. T., Kavitha, K., Moodley, M. K., Rajagopal, K., Balabhaskar, R., & Bhaskar, M. (2017). The impact of anticancer activity upon Beta vulgaris extract mediated biosynthesized silver nanoparticles (ag-NPs) against human breast (MCF-7), lung (A549) and pharynx (Hep-2) cancer cell lines. Journal of Photochemistry and Photobiology, B: Biology, 173, 99–107.

    Article  CAS  PubMed  Google Scholar 

  6. Peng, J., & Liang, X. (2019). Progress in research on gold nanoparticles in cancer management. Medicine (Baltimore), 98, e15311. https://doi.org/10.1097/MD.0000000000015311

    Article  CAS  PubMed  Google Scholar 

  7. Chen, J., Qiu, M., Ye, Z., Nyalile, T., Li, Y., Glass, Z., Zhao, X., Yang, L., Chen, J., & Xu, Q. (2021). In situ cancer vaccination using lipidoid nanoparticles. Science Advances, 7, eabf1244. https://doi.org/10.1126/sciadv.abf1244

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  8. Zhao, Y., Zhao, X., Cheng, Y., Guo, X., & Yuan, W. (2018). Iron oxide nanoparticles-based vaccine delivery for cancer treatment. Molecular Pharmaceutics, 15, 1791–1799.

    Article  CAS  PubMed  Google Scholar 

  9. Abd Elkodous, M., El-Sayyad, G. S., Abdelrahman, I. Y., El-Bastawisy, H. S., Mohamed, A. E., Mosallam, F. M., Nasser, H. A., Gobara, M., Baraka, A., Elsayed, M. A., & El-Batal, A. I. (2019). Therapeutic and diagnostic potential of nanomaterials for enhanced biomedical applications. Colloids Surfaces B Biointerfaces., 180, 411–428. https://doi.org/10.1016/j.colsurfb.2019.05.008

    Article  CAS  PubMed  Google Scholar 

  10. Azharuddin, M., Zhu, G. H., Das, D., Ozgur, E., Uzun, L., Turner, A. P. F., & Patra, H. K. (2019). A repertoire of biomedical applications of noble metal nanoparticles. Chemical Communications, 55, 6964–6996. https://doi.org/10.1039/C9CC01741K

    Article  CAS  PubMed  Google Scholar 

  11. Eivazzadeh-Keihan, R., Noruzi, E. B., Chenab, K. K., Jafari, A., Radinekiyan, F., Hashemi, S. M., Ahmadpour, F., Behboudi, A., Mosafer, J., Mokhtarzadeh, A., Maleki, A., & Hamblin, M. R. (2020). Metal-based nanoparticles for bone tissue engineering. Journal of Tissue Engineering and Regenerative Medicine, 14, 1687–1714. https://doi.org/10.1002/TERM.3131

    Article  CAS  PubMed  Google Scholar 

  12. Shnoudeh, A. J., Hamad, I., Abdo, R. W., Qadumii, L., Jaber, A. Y., Surchi, H. S., & Alkelany, S. Z. (2019). Synthesis, characterization, and applications of metal nanoparticles. Biomaterials and Bionanotechnology, 527–612. https://doi.org/10.1016/B978-0-12-814427-5.00015-9

  13. Rai, M., Nagaonkar, D., & Ingle, A. P. (2018). Metal Nanoparticles as Therapeutic Agents: A Paradigm Shift in Medicine. In S. Thota & D. C. Crans (Eds.), Metal Nanoparticles: Synthesis and Applications in Pharmaceutical Sciences (pp. 33–48). Wiley-VCH Verlag GmbH.

    Chapter  Google Scholar 

  14. Hussain, M.I., **a, M., **ao-NaRen, Akhtar, K., Nawaz, A., Sharma, S. K., Javed, Y. (2020). Ferrite Nanoparticles for Biomedical Applications. In: S. Sharma, Y. Javed (Eds.), Magnetic Nanoheterostructures Diagnostic, Imaging and Treatment, pp 243–265. Springer. https://doi.org/10.1007/978-3-030-39923-8_7.

  15. Vedrtnam, A., Kalauni, K., Dubey, S., Kumar, A., Vedrtnam, A., Kalauni, K., Dubey, S., & Kumar, A. (2020). A comprehensive study on structure, properties, synthesis and characterization of ferrites. AIMS Materials Science, 7, 800–835. https://doi.org/10.3934/MATERSCI.2020.6.800

    Article  CAS  Google Scholar 

  16. Shaikh, S.F., Ubaidullah, M., Mane, R. S., Al-Enizi, A.M. (2020). Types, Synthesis methods and applications of ferrites. In: R.S. Mane, V. V. Jadhav (Eds.) Spinel Ferrite Nanostructures for Energy Storage Devices, pp 51–82. Elsevier. https://doi.org/10.1016/B978-0-12-819237-5.00004-3.

  17. Lima, E. S., Costa, L. S., Sampaio, G. R. L. M., Oliveira, E. S., Silva, E. B., Nascimento, H. O., Nascimento, R. F., Moura, K. O., Bastos-Neto, M., Loiola, A. R., Sasaki, J. M. (2019). Zinc Ferrite Nanoparticles via Coprecipitation Modified Method: Glycerol as Structure Directing and Stabilizing Agent. Journal of the Brazilian Chemical Society 30, 882–891. https://doi.org/10.21577/0103-5053.20180225.

  18. Vinosha, P. A., Mely, L. A., Jeronsia, J. E., Krishnan, S., & Das, S. J. (2017). Synthesis and properties of spinel ZnFe2O4 nanoparticles by facile co-precipitation route. Optik (Stuttg)., 134, 99–108. https://doi.org/10.1016/J.IJLEO.2017.01.018

    Article  CAS  ADS  Google Scholar 

  19. Iza, A. M., Primadi, T. R., Ciptawati, E., Sumari, A. Aliyatulmuna., Nazriati, I. B., & Suryadharma, F. Fajaroh. (2020). Synthesis of zinc ferrite (ZnFe2O4) using microwave assisted coprecipitation method and its effectivity toward photodegradation of malachite green. AIP Conference Proceedings., 2251, 040025. https://doi.org/10.1063/5.0015871

    Article  CAS  Google Scholar 

  20. Jeyaraman, A., Babulal, S. M., Chen, T.-W., Chen, S.-M., Kumar, J.V., Lee, J.-W., Rwei, S.-P., Yu, J., Yu, R., Hong, C.-Y. (2021). Facile Hydrothermal Synthesis of Cubic Zinc Ferrite Nanoparticles for Electrochemical Detection of Anti-inflammatory Drug Nimesulide in Biological and Pharmaceutical Sample. International Journal of Electrochemical Science 16, 210772. https://doi.org/10.20964/2021.07.72.

  21. Hasirci, C., Karaagac, O., & Köçkar, H. (2019). Superparamagnetic zinc ferrite: A correlation between high magnetizations and nanoparticle sizes as a function of reaction time via hydrothermal process. Journal of Magnetism and Magnetic Materials, 474, 282–286. https://doi.org/10.1016/J.JMMM.2018.11.037

    Article  CAS  ADS  Google Scholar 

  22. Wang, W., Guo, S., Zhang, D., & Yang, Z. (2019). One-pot hydrothermal synthesis of reduced graphene oxide/zinc ferrite nanohybrids and its catalytic activity on the thermal decomposition of ammonium perchlorate. Journal of Saudi Chemical Society, 23, 133–140. https://doi.org/10.1016/J.JSCS.2018.05.001

    Article  CAS  Google Scholar 

  23. Tsay, C. Y., Chiu, Y. C., & Tseng, Y. K. (2019). Investigation on structural, magnetic, and FMR properties for hydrothermally-synthesized magnesium-zinc ferrite nanoparticles. Physica B: Condensed Matter, 570, 29–34. https://doi.org/10.1016/J.PHYSB.2019.05.037

    Article  CAS  ADS  Google Scholar 

  24. Li, X., Sun, R., Luo, B., Zhang, A., **a, A., & **, C. (2017). Synthesis and magnetic properties of manganese–zinc ferrite nanoparticles obtained via a hydrothermal method. Journal of Materials Science: Materials in Electronics 2017, 28(2816), 12268–12272. https://doi.org/10.1007/S10854-017-7043-Y

    Article  CAS  Google Scholar 

  25. Kaewmanee, T., Wannapop, S., Phuruangrat, A., Thongtem, T., Wiranwetchayan, O., Promnopas, W., Sansongsiri, S., & Thongtem, S. (2019). Effect of oleic acid content on manganese-zinc ferrite properties. Inorganic Chemistry Communications, 103, 87–92. https://doi.org/10.1016/J.INOCHE.2019.03.016

    Article  CAS  Google Scholar 

  26. Nunes, D., Pimentel, A., Santos, L., Barquinha, P., Pereira, L., Fortunato, E., & Martins, R. (2019). Synthesis, design, and morphology of metal oxide nanostructures. In: Metal Oxide Nanostructures: Synthesis, Properties and Applications, pp 21–57. Elsevier. https://doi.org/10.1016/B978-0-12-811512-1.00002-3

  27. Kashyap, A., Singh, N.K., Soni, M., & Soni, A. (2021). Deposition of thin films by chemical solution-assisted techniques. In: Chemical Solution Synthesis for Materials Design and Thin Film Device Applications, 79–117. Elsevier. https://doi.org/10.1016/B978-0-12-819718-9.00014-5

  28. Zhu, M., Zhang, X., Zhou, Y., Zhuo, C., Huang, J., & Li, S. (2015). Facile solvothermal synthesis of porous ZnFe2O4 microspheres for capacitive pseudocapacitors. RSC Advances, 5, 39270–39277. https://doi.org/10.1039/C5RA00447K

    Article  CAS  ADS  Google Scholar 

  29. Shaterian, M., Rezvani, A., & Abbasian, A. R. (2020). Controlled synthesis and self-assembly of ZnFe2O4 nanoparticles into microspheres by solvothermal method. Materials Research Express, 6, 12505. https://doi.org/10.1088/2053-1591/AB65E0

    Article  Google Scholar 

  30. Reddy, M. P., & Mohamed, A. M. A. (2015). One-pot solvothermal synthesis and performance of mesoporous magnetic ferrite MFe2O4 nanospheres. Microporous and Mesoporous Materials, 215, 37–45. https://doi.org/10.1016/j.micromeso.2015.05.024

    Article  CAS  Google Scholar 

  31. Guo, P., Lv, M., Han, G., Wen, C., Wang, Q., Li, H., & Zhao, X. S. (2016). Solvothermal Synthesis of Hierarchical Colloidal Nanocrystal Assemblies of ZnFe2O4 and Their Application in Water Treatment. Materials (Basel)., 9, 806. https://doi.org/10.3390/MA9100806

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  32. Ma J., Chen B., Chen B., Zhang S. (2017). Preparation of superparamagnetic ZnFe2O4 submicrospheres via a solvothermal method. Advanced Nano Research 5: 171–178. https://doi.org/10.12989/ANR.2017.5.2.171.

  33. Zhang, M., & Liu, Q. (2019). Solvothermal Synthesis and Magnetic Properties of Monodisperse Ni0.5Zn0.5Fe2O4 Hollow Nanospheres. High Temp. Materials Processing., 38, 76–83. https://doi.org/10.1515/HTMP-2017-0101

    Article  CAS  ADS  Google Scholar 

  34. Manohar, A., & Krishnamoorthi, C. (2017). Magnetic and photocatalytic studies on Zn1 −xMgxFe2O4 nanocolloids synthesized by solvothermal reflux method. Journal of Photochemistry and Photobiology, B: Biology, 177, 95–104. https://doi.org/10.1016/J.JPHOTOBIOL.2017.10.009

    Article  CAS  PubMed  Google Scholar 

  35. Surinwong, S., & Rujiwatra, A. (2013). Ultrasonic cavitation assisted solvothermal synthesis of superparamagnetic zinc ferrite nanoparticles. Particuology., 11, 588–593. https://doi.org/10.1016/J.PARTIC.2012.06.008

    Article  CAS  Google Scholar 

  36. Phuruangrat, A., Kuntalue, B., Dumrongrojthanath, P., Thongtem, T., & Thongtem, S. (2018). Microwave-Assisted Solvothermal Synthesis of Cubic Ferrite (MFE 2 O 4, M = Mn, Zn, Cu and Ni) Nanocrystals and their Magnetic Properties. Digest Journal of Nanomaterials and Biostructures, 13, 563–568.

    Google Scholar 

  37. Shaterian, M., Rezvani, A., & Abbasian, A. R. (2021). Controllable synthesis of ZnFe2O4 sub-microparticles by poly (diallyldimethylammonium chloride)-assisted solvothermal method. Journal of Polymer Research, 28, 1–12. https://doi.org/10.1007/S10965-021-02416-1

    Article  Google Scholar 

  38. Danks, A. E., Hall, S. R., & Schnepp, Z. (2016). The evolution of ‘sol–gel’ chemistry as a technique for materials synthesis. Materials Horizons., 3, 91–112. https://doi.org/10.1039/C5MH00260E

    Article  CAS  Google Scholar 

  39. Parashar, M., Shukla, V. K., & Singh, R. (2020). Metal oxides nanoparticles via sol–gel method: A review on synthesis, characterization and applications. Journal of Materials Science: Materials in Electronics, 31, 3729–3749. https://doi.org/10.1007/S10854-020-02994-8

    Article  CAS  Google Scholar 

  40. Yarbrough, R., Davis, K., Dawood, S., & Rathnayake, H. (2020). A sol-gel synthesis to prepare size and shape-controlled mesoporous nanostructures of binary (II-VI) metal oxides. RSC Advances, 10, 14134–14146. https://doi.org/10.1039/d0ra01778g

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  41. Iqbal, F., Mutalib, M. I. A., Shaharun, M. S., Khan, M., & Abdullah, B. (2016). Synthesis of ZnFe2O4 Using sol-gel Method: Effect of Different Calcination Parameters. Procedia Engineering, 148, 787–794. https://doi.org/10.1016/J.PROENG.2016.06.563

    Article  CAS  Google Scholar 

  42. **an, G., Kong, S., Li, Q., Zhang, G., Zhou, N., Du, H., & Niu, L. (2020) Synthesis of spinel ferrite MFe2O4 (M = Co, Cu, Mn, and Zn) for persulfate activation to remove aqueous organics: Effects of M-Site metal and synthetic method. Frontiers in Chemistry, 177. https://doi.org/10.3389/FCHEM.2020.00177

  43. Chithra, M., Anumol, C. N., Sahu, B., & Sahoo, S. C. (2019). Magnetic properties of Zn-ferrite nanoparticles prepared by sol-gel and coprecipitation methods. Materials Research Express., 6, 125059. https://doi.org/10.1088/2053-1591/AB589B

    Article  CAS  ADS  Google Scholar 

  44. Bhosale, R. R., Kumar, A., Almomani, F., & Alxneit, I. (2016). Propylene oxide assisted sol–gel synthesis of zinc ferrite nanoparticles for solar fuel production. Ceramics International, 42, 2431–2438. https://doi.org/10.1016/J.CERAMINT.2015.10.043

    Article  CAS  Google Scholar 

  45. Desai, Y. P., Jamwal, S., Modiyil, S., Chodankar, S., Sathe, R., & Kothawale, M. M. (2020). Structural and magnetic studies of nanocrystalline Ni-Zn ferrites synthesized by sol-gel method. AIP Conference Proceedings, 2265, 030511. https://doi.org/10.1063/5.0016757

    Article  CAS  Google Scholar 

  46. Hossain, M. S., Alam, M. B., Shahjahan, M., Begum, M. H. A., Hossain, M. M., Islam, S., Khatun, N., Hossain, M., Alam, M.S., & Al-Mamun, M. (2018). Synthesis, structural investigation, dielectric and magnetic properties of Zn2+-doped cobalt ferrite by the sol–gel technique. Journal of Advanced Dielectrics. 8. https://doi.org/10.1142/S2010135X18500303

  47. Kefeni, K. K., Msagati, T. A. M., & Mamba, B. B. (2017). Ferrite nanoparticles: Synthesis, characterisation and applications in electronic device. Materials Science and Engineering B, 215, 37–55. https://doi.org/10.1016/J.MSEB.2016.11.002

    Article  CAS  Google Scholar 

  48. Popkov, V. I., Tolstoy, V. P., & Semenov, V. G. (2020). Synthesis of phase-pure superparamagnetic nanoparticles of ZnFe2O4 via thermal decomposition of zinc-iron layered double hydroxysulphate. Journal of Alloys and Compounds, 813, 152179. https://doi.org/10.1016/J.JALLCOM.2019.152179

    Article  CAS  Google Scholar 

  49. Andjelković, L., Šuljagić, M., Lakić, M., Jeremić, D., Vulić, P., & Nikolić, A. S. (2018). A study of the structural and morphological properties of Ni–ferrite, Zn–ferrite and Ni–Zn–ferrites functionalized with starch. Ceramics International, 44, 14163–14168. https://doi.org/10.1016/J.CERAMINT.2018.05.018

    Article  Google Scholar 

  50. Hwang, J., Choi, M., Shin, H.-S., Ju, B.-K., & Chun, M. (2020). Structural and Magnetic Properties of NiZn Ferrite Nanoparticles Synthesized by a Thermal Decomposition Method. Applied Sciences, 10, 6279. https://doi.org/10.3390/APP10186279

    Article  CAS  Google Scholar 

  51. Samrot, A. V., Sahithya, C. S., Selvarani, J. A., Purayil, S. K., & Ponnaiah, P. (2021). A review on synthesis, characterization and potential biological applications of superparamagnetic iron oxide nanoparticles. Current Research in Green and Sustainable Chemistry, 4, 100042. https://doi.org/10.1016/J.CRGSC.2020.100042

    Article  CAS  Google Scholar 

  52. Piras, C. C., Fernández-Prieto, S., & De Borggraeve, W. M. (2019). Ball milling: A green technology for the preparation and functionalisation of nanocellulose derivatives. Nanoscale Advances, 1, 937–947. https://doi.org/10.1039/c8na00238j

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  53. Wu, K., Su, D., Liu, J., Saha, R., & Wang J.-P. (2019). Magnetic nanoparticles in nanomedicine: a review of recent advances. Nanotechnology. 30. https://doi.org/10.1088/1361-6528/AB4241

  54. Mozaffari, M., & Masoudi, H. (2014). Zinc Ferrite Nanoparticles: New Preparation Method and Magnetic Properties. Journal of Superconductivity and Novel Magnetism, 27, 2563–2567. https://doi.org/10.1007/S10948-014-2625-X

    Article  CAS  Google Scholar 

  55. Hapishah, A. N., Syazwan, M. M., & Hamidon, M. N. (2018). Synthesis and characterization of magnetic and microwave absorbing properties in polycrystalline cobalt zinc ferrite (Co0.5Zn0.5Fe2O4) composite. Journal of Materials Science: Materials in Electronics, 29, 20573–20579. https://doi.org/10.1007/S10854-018-0192-9

    Article  CAS  Google Scholar 

  56. Zhang, Y., Wu, Y., Qin, Q., Wang, F., & Chen, D. (2016). A study of the mechanism of microwave-assisted ball milling preparing ZnFe2O4. Journal of Magnetism and Magnetic Materials, 409, 6–9. https://doi.org/10.1016/J.JMMM.2016.02.066

    Article  CAS  ADS  Google Scholar 

  57. Gour, A., & Jain, N. K. (2019). Advances in green synthesis of nanoparticles. Artificial Cells, Nanomedicine, and Biotechnology, 47, 844–851. https://doi.org/10.1080/21691401.2019.1577878

    Article  CAS  PubMed  Google Scholar 

  58. Din, M. I., Jabbar, S., Najeeb, J., Khalid, R., Ghaffar, T., Arshad, M., Khan, S. A., & Ali, S. (2020). Green synthesis of zinc ferrite nanoparticles for photocatalysis of methylene blue. International Journal of Phytoremediation, 22, 1440–1447. https://doi.org/10.1080/15226514.2020.1781783

    Article  CAS  PubMed  Google Scholar 

  59. Shebl, A., Hassan, A., Salama, D., Abd El-Aziz, M. E., & Abd Elwahed, M. (2019). Green synthesis of manganese zinc ferrite nanoparticles and their application as nanofertilizers for Cucurbita pepo L. Beilstein Archives, 2019, 45.

    Google Scholar 

  60. TaghaviFardood, S., Ramazani, A., Golfar, Z., & Joo, S. W. (2017). Green synthesis of Ni-Cu-Zn ferrite nanoparticles using tragacanth gum and their use as an efficient catalyst for the synthesis of polyhydroquinoline derivatives. Applied Organometallic Chemistry., 31, e3823. https://doi.org/10.1002/aoc.3823

    Article  CAS  Google Scholar 

  61. Madhukara Naik, M., Bhojya Naik, H. S., Nagaraju, G., Vinuth, M., Raja Naika, H., & Vinu, K. (2019). Green synthesis of zinc ferrite nanoparticles in Limoniaacidissima juice: Characterization and their application as photocatalytic and antibacterial activities. Microchemical Journal., 146, 1227–1235. https://doi.org/10.1016/j.microc.2019.02.059

    Article  CAS  Google Scholar 

  62. Korotkova, A. M., Polivanova, O. B., Gavrish, I. A., Baranova, E. N., & Lebedev, S. V. (2019). Green synthesis of zinc based nanoparticles zinc ferrite by Petroselinum crispum. IOP Conference Series: Earth and Environmental Science, 341, 012175. https://doi.org/10.1088/1755-1315/341/1/012175

    Article  Google Scholar 

  63. Matinise, N., Kaviyarasu, K., Mongwaketsi, N., Khamlich, S., Kotsedi, L., Mayedwa, N., & Maaza, M. (2018). Green synthesis of novel zinc iron oxide (ZnFe2O4) nanocomposite via Moringa Oleifera natural extract for electrochemical applications. Applied Surface Science, 446, 66–73. https://doi.org/10.1016/j.apsusc.2018.02.187

    Article  CAS  ADS  Google Scholar 

  64. Patil, S. B., Bhojya Naik, H. S., Nagaraju, G., Viswanath, R., Rashmi, S. K., & Vijay Kumar, M. (2018). Sugarcane juice mediated eco-friendly synthesis of visible light active zinc ferrite nanoparticles: Application to degradation of mixed dyes and antibacterial activities. Materials Chemistry and Physics., 212, 351–362. https://doi.org/10.1016/j.matchemphys.2018.03.038

    Article  CAS  Google Scholar 

  65. Lakshmi Ranganatha, V., Pramila, S., Nagaraju, G., Udayabhanu, B. S., & Surendra, C. Mallikarjunaswamy. (2020). Cost-effective and green approach for the synthesis of zinc ferrite nanoparticles using Aegle Marmelos extract as a fuel: catalytic, electrochemical, and microbial applications. Journal of Materials Science: Materials in Electronics., 31, 17386–17403. https://doi.org/10.1007/s10854-020-04295-6

    Article  CAS  Google Scholar 

  66. S. Hafez Ghoran, M. FadaeiDashti, A. Maroofi, M. Shafiee, A. Zare-Hoseinabadi, F. Behzad, M. Mehrabi, A. Jangjou, K. Jamali (2020) Biosynthesis of Zinc Ferrite Nanoparticles Using Polyphenol-rich extract of Citrus aurantium flowers. Nanomedicine Research Journal 5: 20–28. https://doi.org/10.22034/nmrj.2020.01.003.

  67. V.A. Fabiani, H. Aldila, Anggraeni, Nur’aini (2020). Green synthesis and characterization of Zinc Ferrite (ZnFe 2 O 4 ) nanocomposite via Tristaniopsismerguensis Griff. Natural extract. IOP Conference Series: Earth and Environmental Science, 599, 012066. https://doi.org/10.1088/1755-1315/599/1/012066.

  68. Anu Mary Ealia, S., & Saravanakumar, M. P. (2017). A review on the classification, characterisation, synthesis of nanoparticles and their application. IOP Conference Series: Materials Science and Engineering, 263, 032019. https://doi.org/10.1088/1757-899X/263/3/032019

    Article  Google Scholar 

  69. Khan, I., Saeed, K., & Khan, I. (2019). Nanoparticles: Properties, applications and toxicities. Arabian Journal of Chemistry, 12, 908–931. https://doi.org/10.1016/j.arabjc.2017.05.011

    Article  CAS  Google Scholar 

  70. Wang, G., Ma, Y., Tong, Y., Dong, X., & Li, M. (2017). Solvothermal synthesis, characterization, and magnetorheological study of zinc ferrite nanocrystal clusters. Journal of Intelligent Material Systems and Structures, 28, 2331–2338. https://doi.org/10.1177/1045389X16685449

    Article  CAS  Google Scholar 

  71. A.K. Singh (2016). Experimental methodologies for the characterization of nanoparticles. In: Engineered Nanoparticles: Structure, Properties and Mechanisms of Toxicity, Academic Press, pp. 125–170. https://doi.org/10.1016/B978-0-12-801406-6.00004-2

  72. Al-Hada, N. M., Kamari, H. M., Shaari, A. H., & Saion, E. (2019). Fabrication and characterization of Manganese-Zinc Ferrite nanoparticles produced utilizing heat treatment technique. Results in Physics, 12, 1821–1825. https://doi.org/10.1016/J.RINP.2019.02.019

    Article  ADS  Google Scholar 

  73. Mourdikoudis, S., Pallares, R. M., & Thanh, N. T. K. (2018). Characterization techniques for nanoparticles: Comparison and complementarity upon studying nanoparticle properties. Nanoscale, 10, 12871–12934. https://doi.org/10.1039/C8NR02278J

    Article  CAS  PubMed  Google Scholar 

  74. Kmita, A., Lachowicz, D., Żukrowski, J., Gajewska, M., Szczerba, W., Kuciakowski, J., Zapotoczny, S., & Sikora, M. (2019). One-Step Synthesis of Long Term Stable Superparamagnetic Colloid of Zinc Ferrite Nanorods in Water. Materials (Basel)., 12, 1048. https://doi.org/10.3390/ma12071048

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  75. Thota, S., Kashyap, S. C., Sharma, S. K., & Reddy, V. R. (2016). Micro Raman, Mossbauer and magnetic studies of manganese substituted zinc ferrite nanoparticles: Role of Mn. Journal of Physics and Chemistry of Solids, 91, 136–144. https://doi.org/10.1016/j.jpcs.2015.12.013

    Article  CAS  ADS  Google Scholar 

  76. Aisida, S. O., Akpa, P. A., Ahmad, I., Maaza, M., & Ezema, F. I. (2019). Influence of PVA, PVP and PEG do** on the optical, structural, morphological and magnetic properties of zinc ferrite nanoparticles produced by thermal method. Phys. B Condens. Matter., 571, 130–136. https://doi.org/10.1016/j.physb.2019.07.001

    Article  CAS  ADS  Google Scholar 

  77. Nasrollahzadeh M., Atarod, M., Sajjadi, M., Sajadi, S. M., Issaabadi Z. (2019). Plant-Mediated Green Synthesis of Nanostructures: Mechanisms, Characterization, and Applications. In: M. Nasrollahzadeh, S.M. Sajadi, M. Sajjadi, Z. Issaabadi, M. Atarod (Eds.), An Introduction to Green Nanotechnology, pp. 199–322. Elsevier. https://doi.org/10.1016/B978-0-12-813586-0.00006-7.

  78. Okoroh, D. O., Ozuomba, J., Aisida, S. O., & Asogwa, P. U. (2019). Thermal treated synthesis and characterization of polyethylene glycol (PEG) mediated zinc ferrite nanoparticles. Surfaces and Interfaces., 16, 127–131. https://doi.org/10.1016/J.SURFIN.2019.05.004

    Article  CAS  Google Scholar 

  79. Begum, R., Farooqi, Z. H., Naseem, K., Ali, F., Batool, M., **ao, J., & Irfan, A. (2018). Applications of UV/Vis Spectroscopy in Characterization and Catalytic Activity of Noble Metal Nanoparticles Fabricated in Responsive Polymer Microgels: A Review. Critical Reviews in Analytical Chemistry, 48, 503–516. https://doi.org/10.1080/10408347.2018.1451299

    Article  CAS  PubMed  Google Scholar 

  80. Sundararajan, M., John Kennedy, L., & Judith Vijaya, J. (2015). Synthesis and characterization of cobalt substituted zinc ferrite nanoparticles by microwave combustion method. Journal of Nanoscience and Nanotechnology, 15, 6719–6728. https://doi.org/10.1166/JNN.2015.10347

    Article  CAS  PubMed  Google Scholar 

  81. Rawle, A.F. (2017). Characterization of Nanomaterials. In: E. Mansfield, D.L. Kaiser, D. Fujita, M. Van de Voorde (Eds.), Metrology and Standardization of Nanotechnology: Protocols and Industrial Innovations, pp. 129–150. John Wiley & Sons, Ltd. https://doi.org/10.1002/9783527800308.CH7.

  82. Fajaroh, F., Susilowati, I. D., Nazriati, Sumari, Nur, A. (2019). Synthesis of ZnFe2O4 Nanoparticles with PEG 6000 and Their Potential Application for Adsorbent. In: IOP Conf. Ser. Mater. Sci. Eng., p. 012049. IOP Publishing, Malang. https://doi.org/10.1088/1757-899X/515/1/012049.

  83. Mayekar, J., Dhar, V., & Radha, S. (2016). Synthesis, characterization and magnetic study of zinc ferrite nanoparticles. Synthesis (Stuttg). 5. https://doi.org/10.15680/IJIRSET.2016.0505268

  84. Iqubal, M. A., & Sharma, R. (2015). Kamaluddin, Studies on interaction of ribonucleotides with zinc ferrite nanoparticles using spectroscopic and microscopic techniques Karbala. International Journal of Molecular Sciences, 1, 49–59. https://doi.org/10.1016/J.KIJOMS.2015.06.001

    Article  Google Scholar 

  85. Borade, R. M., Somvanshi, S. B., Kale, S. B., Pawar, R. P., & Jadhav, K. M. (2020). Spinel zinc ferrite nanoparticles: an active nanocatalyst for microwave irradiated solvent free synthesis of chalcones. Materials Research Express, 7, 016116. https://doi.org/10.1088/2053-1591/ab6c9c

    Article  CAS  ADS  Google Scholar 

  86. Aisida, S. O., Ahmad, I., & Ezema, F. I. (2020). Effect of calcination on the microstructural and magnetic properties of PVA, PVP and PEG assisted zinc ferrite nanoparticles. Physica B: Condensed Matter., 579, 411907. https://doi.org/10.1016/J.PHYSB.2019.411907

    Article  CAS  Google Scholar 

  87. Okoroh, D. O., Ozuomba, J. O., Aisida, S. O., & Asogwa, P. U. (2019). Properties of Zinc Ferrite Nanoparticles Due to PVP Mediation and Annealing at 500°C. Advances in Nanoparticles, 08, 36–45. https://doi.org/10.4236/ANP.2019.82003

    Article  CAS  Google Scholar 

  88. Bakhshi, H., Vahdati, N., Sedghi, A., & Mozharivskyj, Y. (2019). Comparison of the effect of nickel and cobalt cations addition on the structural and magnetic properties of manganese-zinc ferrite nanoparticles. Journal of Magnetism and Magnetic Materials, 474, 56–62. https://doi.org/10.1016/J.JMMM.2018.10.146

    Article  CAS  ADS  Google Scholar 

  89. Garg, J., Kakkar, V., & Pawar, S. V. (2021). Resealed erythrocytes: Towards a novel approach for anticancer therapy. Journal of the Indian Chemical Society., 98, 100257. https://doi.org/10.1016/j.jics.2021.100257

    Article  CAS  Google Scholar 

  90. Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2021). Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209–249. https://doi.org/10.3322/CAAC.21660

    Article  PubMed  Google Scholar 

  91. Awasthi, R., Roseblade, A., Hansbro, P. M., Rathbone, M. J., Dua, K., & Bebawy, M. (2018). Nanoparticles in Cancer Treatment: Opportunities and Obstacles. Current Drug Targets, 19, 1696–1709. https://doi.org/10.2174/1389450119666180326122831

    Article  CAS  PubMed  Google Scholar 

  92. Aghebati-Maleki, A., Dolati, S., Ahmadi, M., Baghbanzhadeh, A., Asadi, M., Fotouhi, A., Yousefi, M., & Aghebati-Maleki, L. (2020). Nanoparticles and cancer therapy: Perspectives for application of nanoparticles in the treatment of cancers. Journal of Cellular Physiology, 235, 1962–1972. https://doi.org/10.1002/JCP.29126

    Article  CAS  PubMed  Google Scholar 

  93. Gomathi, A. C., Xavier Rajarathinam, S. R., Mohammed Sadiq, A., & Rajeshkumar, S. (2020). Anticancer activity of silver nanoparticles synthesized using aqueous fruit shell extract of Tamarindus indica on MCF-7 human breast cancer cell line. Journal of Drug Delivery Science and Technology., 55, 101376. https://doi.org/10.1016/J.JDDST.2019.101376

    Article  CAS  Google Scholar 

  94. Azizi, M., Ghourchian, H., Yazdian, F., Bagherifam, S., Bekhradnia, S., & Nyström, B. (2017). Anti-cancerous effect of albumin coated silver nanoparticles on MDA-MB 231 human breast cancer cell line. Science and Reports, 7, 1–18. https://doi.org/10.1038/s41598-017-05461-3

    Article  CAS  Google Scholar 

  95. Chen, J., Hu, C., Niestroj, M., Yuan, D., & Chang, S. (2015). Treating cancer stem cells and cancer metastasis using glucose-coated gold nanoparticles. International Journal of Nanomedicine, 10, 2065–2077. https://doi.org/10.2147/IJN.S72144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Sun, M., Peng, D., Hao, H., Hu, J., Wang, D., Wang, K., Liu, J., Guo, X., Wei, Y., & Gao, W. (2017). Thermally Triggered in Situ Assembly of Gold Nanoparticles for Cancer Multimodal Imaging and Photothermal Therapy. ACS Applied Materials & Interfaces, 9, 10453–10460. https://doi.org/10.1021/ACSAMI.6B16408

    Article  CAS  Google Scholar 

  97. Chu, I.-M., Tseng, S.-H., & Chou, M.-Y. (2015). Cetuximab-conjugated iron oxide nanoparticles for cancer imaging and therapy. International Journal of Nanomedicine, 10, 3663–3685. https://doi.org/10.2147/IJN.S80134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Espinosa, A., Di Corato, R., Kolosnjaj-Tabi, J., Flaud, P., Pellegrino, T., & Wilhelm, C. (2016). Duality of iron oxide nanoparticles in cancer therapy: Amplification of heating efficiency by magnetic hyperthermia and photothermal bimodal treatment. ACS Nano,10. https://doi.org/10.1021/acsnano.5b07249

  99. Bai, D.-P., Zhang, X.-F., Zhang, G.-L., Huang, Y.-F., & Gurunathan, S. (2017). Zinc oxide nanoparticles induce apoptosis and autophagy in human ovarian cancer cells. International Journal of Nanomedicine. 12. https://doi.org/10.2147/IJN.S140071

  100. Rajeshkumar, S., Kumar, S. V., Ramaiah, A., Agarwal, H., Lakshmi, T., & Roopan, S. M. (2018). Biosynthesis of zinc oxide nanoparticles usingMangifera indica leaves and evaluation of their antioxidant and cytotoxic properties in lung cancer (A549) cells. Enzyme and Microbial Technology 117. https://doi.org/10.1016/j.enzmictec.2018.06.009

  101. Boroumand Moghaddam, A., Moniri, M., Azizi, S., Abdul Rahim, R., Bin Ariff, A., Navaderi, & M., Mohamad, R. (2017). Eco-friendly formulated zinc oxide nanoparticles: Induction of cell cycle arrest and apoptosis in the MCF-7 cancer cell line. Genes (Basel). 8. https://doi.org/10.3390/genes8100281

  102. Ficai, D., Ficai, A., & Andronescu, E. (2015). Advances in cancer treatment: role of nanoparticles. In: M.L. Larramendy, S. Soloneski (Eds.), Nanomaterials - Toxicity and Risk Assessment. InTech. https://doi.org/10.5772/60665

  103. Sarala, E., Madhukara Naik, M., Vinuth, M., Rami Reddy, Y. V., & Sujatha, H. R. (2020). Green synthesis of Lawsoniainermis-mediated zinc ferrite nanoparticles for magnetic studies and anticancer activity against breast cancer (MCF-7) cell lines. Journal of Materials Science: Materials in Electronics, 31, 8589–8596. https://doi.org/10.1007/S10854-020-03394-8

    Article  CAS  Google Scholar 

  104. Jha, S., Sharma, P. K., & Malviya, R. (2016). Hyperthermia: Role and Risk Factor for Cancer Treatment, Achiev. Life Sciences, 10, 161–167. https://doi.org/10.1016/J.ALS.2016.11.004

    Article  Google Scholar 

  105. Yagawa, Y., Tanigawa, K., Kobayashi, Y., Yamamoto, M. (2017). Cancer immunity and therapy using hyperthermia with immunotherapy, radiotherapy, chemotherapy, and surgery. Journal of Cancer Metastasis and Treatment 3, 218–230. https://doi.org/10.20517/2394-4722.2017.35.

  106. Raland, R. D., Saikia, D., Borgohain, C., & Borah, J. P. (2017). Heating efficiency and correlation between the structural and magnetic properties of oleic acid coated MnFe2O4 nanoparticles for magnetic hyperthermia application. Journal of Physics D: Applied Physics, 50, 325004. https://doi.org/10.1088/1361-6463/AA77E9

    Article  Google Scholar 

  107. Jadhav, S. V., Shewale, P. S., Shin, B. C., Patil, M. P., Kim, G. D., Rokade, A. A., Park, S. S., Bohara, R. A., & Yu, Y. S. (2019). Study of structural and magnetic properties and heat induction of gadolinium-substituted manganese zinc ferrite nanoparticles for in vitro magnetic fluid hyperthermia. Journal of Colloid and Interface Science, 541, 192–203. https://doi.org/10.1016/J.JCIS.2019.01.063

    Article  CAS  PubMed  ADS  Google Scholar 

  108. Kanagesan, S., Hashim, M., Aziz, S. A. B., Ismail, I., Tamilselvan, S., Alitheen, N., Swamy, M., & B. Purna Chandra Rao. (2016). Evaluation of antioxidant and cytotoxicity activities of copper ferrite (CuFe2O4) and zinc ferrite (ZnFe2O4) nanoparticles synthesized by Sol-Gel Self-combustion method. Applied Sciences, 6. https://doi.org/10.3390/app6090184

  109. Chaudhary, R., Roy, K., Kanwar, R. K., Walder, K., & Kanwar, J. R. (2016). Engineered atherosclerosis-specific zinc ferrite nanocomplex-based MRI contrast agents. Journal of Nanobiotechnology, 14, 1–17. https://doi.org/10.1186/S12951-016-0157-1

    Article  Google Scholar 

  110. Kim, H.-K., Lee, G. H., & Chang, Y. (2018). Gadolinium as an MRI contrast agent. Future Medicinal Chemistry, 10. https://doi.org/10.4155/fmc-2017-0215

  111. Sattarahmady, N., Heidari, M., Zare, T., Lotfi, M., & Heli, H. (2016). Zinc-Nickel Ferrite Nanoparticles as a Contrast Agent in Magnetic Resonance Imaging. Applied Magnetic Resonance, 47, 925–935. https://doi.org/10.1007/S00723-016-0801-9

    Article  CAS  Google Scholar 

  112. Ghasemian, Z., Shahbazi-Gahrouei, D., & Manouchehri, S. (2015). Cobalt Zinc Ferrite Nanoparticles as a Potential Magnetic Resonance Imaging Agent: An In vitro Study. Avicenna Journal of Medical Biotechnology, 7, 64.

    PubMed  PubMed Central  Google Scholar 

  113. Sawant, V. J., Bamane, S. R., Shejwal, R. V., & Patil, S. B. (2016). Comparison of drug delivery potentials of surface functionalized cobalt and zinc ferrite nanohybrids for curcumin in to MCF-7 breast cancer cells. Journal of Magnetism and Magnetic Materials, 417, 222–229. https://doi.org/10.1016/J.JMMM.2016.05.061

    Article  CAS  ADS  Google Scholar 

  114. Sobhani, T., Shahbazi-Gahrouei, D., Rostami, M., Zahraei, M., & Farzadniya, A. (2019). Assessment of Manganese-Zinc Ferrite Nanoparticles as a Novel Magnetic Resonance Imaging Contrast Agent for the Detection of 4T1 Breast Cancer Cells. Journal of Medical Signals and Sensors, 9, 245. https://doi.org/10.4103/JMSS.JMSS_59_18

    Article  PubMed  PubMed Central  Google Scholar 

  115. Somvanshi, S. B., Kumar, R. V., Kounsalye, J. S., Saraf, T. S., & Jadhav, K. M. (2019). Investigations of structural, magnetic and induction heating properties of surface functionalized zinc ferrite nanoparticles for hyperthermia applications. AIP Conference Proceedings, 2115, 030522. https://doi.org/10.1063/1.5113361

    Article  CAS  Google Scholar 

  116. Pan, U. N., Sanpui, P., Paul, A., & Chattopadhyay, A. (2018). Surface-Complexed Zinc Ferrite Magnetofluorescent Nanoparticles for Killing Cancer Cells and Single-Particle-Level Cellular Imaging. ACS Applied Nano Materials, 1, 2496–2502. https://doi.org/10.1021/ACSANM.8B00545

    Article  CAS  Google Scholar 

  117. Halder, S., Liba, S. I., Nahar, A., Sikder, S. S., & Hoque, S. M. (2020). To study the surface modified cobalt zinc ferrite nanoparticles for application to magnetic hyperthermia. AIP Advances, 10, 125308. https://doi.org/10.1063/5.0029135

    Article  CAS  ADS  Google Scholar 

  118. Aisida, S. O., Ali, A., Oyewande, O. E., Ahmad, I., Ul-Hamid, A., Zhao, T., Maaza, M., & Ezema, F. I. (2021). Biogenic synthesis enhanced structural, morphological, magnetic and optical properties of zinc ferrite nanoparticles for moderate hyperthermia applications. Journal of Nanoparticle Research, 23, 1–14. https://doi.org/10.1007/S11051-021-05149-W

    Article  ADS  Google Scholar 

  119. Jyothish, B., & Jacob, J. (2021). Al-doped zinc ferrite nanoparticles: Preparation and evaluation of thermal, structural, morphological and anticancer properties. Journal of Alloys and Compounds, 863, 158352. https://doi.org/10.1016/J.JALLCOM.2020.158352

    Article  CAS  Google Scholar 

  120. Guo, T., Dou, F., Lin, M., Huang, J., Zhou, C., Zhang, J., Yu, H., Jiang, X., Ye, J., Shi, Y., **ao, Y., Bian, X., Feng, X., & Xu, N. (2019). Biological characteristics and carrier functions of pegylated manganese zinc ferrite nanoparticles. Journal of Nanomaterials, 2019. https://doi.org/10.1155/2019/6854710

  121. Bohara, R. A., Thorat, N. D., Chaurasia, A. K., & Pawar, S.H. (2015). Cancer cell extinction through a magnetic fluid hyperthermia treatment produced by superparamagnetic Co–Zn ferrite nanoparticles. RSC Advances, 5. https://doi.org/10.1039/C5RA04553C

  122. Mallick, A., Mahapatra, A. S., Mitra, A., Greneche, J. M., Ningthoujam, R. S., & Chakrabarti P. K. (2018). Magnetic properties and bio-medical applications in hyperthermia of lithium zinc ferrite nanoparticles integrated with reduced graphene oxide. Journal of Applied Physics, 123. https://doi.org/10.1063/1.5009823

  123. Patade, S. R., Andhare, D. D., Somvanshi, S. B., Kharat, P. B., More, S. D., & Jadhav, K. M. (2020). Preparation and characterisations of magnetic nanofluid of zinc ferrite for hyperthermia. Nanomaterials and Energy, 9. https://doi.org/10.1680/jnaen.19.00006

  124. Meidanchi, A., Akhavan, O., Khoei, S., Shokri, A. A., Hajikarimi, Z., & Khansari, N. (2015). ZnFe2O4 nanoparticles as radiosensitizers in radiotherapy of human prostate cancer cells. Materials Science and Engineering C, 46, 394–399. https://doi.org/10.1016/J.MSEC.2014.10.062

    Article  CAS  PubMed  Google Scholar 

  125. Lachowicz, D., Górka, W., Kmita, A., Bernasik, A., Żukrowski, J., Szczerba, W., Sikora, M., Kapusta, C., & Zapotoczny, S. (2019). Enhanced hyperthermic properties of biocompatible zinc ferrite nanoparticles with a charged polysaccharide coating. Journal of Materials Chemistry B, 7, 2962–2973. https://doi.org/10.1039/C9TB00029A

    Article  CAS  Google Scholar 

  126. Singh, A., Singh, N. B., Afzal, S., Singh, T., & Hussain, I. (2018). Zinc oxide nanoparticles: A review of their biological synthesis, antimicrobial activity, uptake, translocation and biotransformation in plants. Journal of Materials Science, 53, 185–201. https://doi.org/10.1007/s10853-017-1544-1

    Article  CAS  ADS  Google Scholar 

  127. Gharpure, S., Akash, A., & Ankamwar, B. (2020). A Review on Antimicrobial Properties of Metal Nanoparticles. Journal of Nanoscience and Nanotechnology, 20, 3303–3339. https://doi.org/10.1166/jnn.2020.17677

    Article  CAS  PubMed  Google Scholar 

  128. Roy, A., Joshi, M., Butola, B. S., & Malhotra, S. (2018). Antimicrobial and toxicological behavior of montmorillonite immobilized metal nanoparticles. Materials Science and Engineering C, 93, 704–715. https://doi.org/10.1016/j.msec.2018.08.029

    Article  CAS  PubMed  Google Scholar 

  129. Fernando, S., Gunasekara, T., & Holton, J. (2018). Antimicrobial Nanoparticles: Applications and mechanisms of action. Sri Lankan J. Infect. Dis., 8, 2. https://doi.org/10.4038/sljid.v8i1.8167

    Article  Google Scholar 

  130. Sánchez-López, E., Gomes, D., Esteruelas, G., Bonilla, L., Lopez-Machado, A. L., Galindo, R., Cano, A., Espina, M., Ettcheto, M., Camins, A., Silva, A. M., Durazzo, A., Santini, A., Garcia, M. L., & Souto, E. B. (2020). Metal-Based Nanoparticles as Antimicrobial Agents: An Overview. Nanomaterials, 10, 292. https://doi.org/10.3390/nano10020292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Nisar, P., Ali, N., Rahman, L., Ali, M., & Shinwari, Z. K. (2019). Antimicrobial activities of biologically synthesized metal nanoparticles: An insight into the mechanism of action. JBIC, Journal of Biological Inorganic Chemistry, 24, 929–941. https://doi.org/10.1007/s00775-019-01717-7

    Article  CAS  PubMed  Google Scholar 

  132. Gold, K., Slay, B., Knackstedt, M., & Gaharwar, A. K. (2018). Antimicrobial Activity of Metal and Metal-Oxide Based Nanoparticles. Advances in Therapy, 1, 1700033. https://doi.org/10.1002/adtp.201700033

    Article  CAS  Google Scholar 

  133. El-Refai, A. A., Ghoniem, G. A., El-Khateeb, A. Y., & Hassaan, M. M. (2018). Eco-friendly synthesis of metal nanoparticles using ginger and garlic extracts as biocompatible novel antioxidant and antimicrobial agents. Journal of Nanostructure in Chemistry, 8, 71–81. https://doi.org/10.1007/s40097-018-0255-8

    Article  CAS  Google Scholar 

  134. Anooj, E. S., Sreelekshmi, S. J., Gopukumar, S. T., & Praseetha, P. K. (2017). Evaluation of the Zinc Ferrite Nano particles for Bio-applications. International Journal of Pharmaceutical Sciences Review and Research, 46, 22–26.

    CAS  Google Scholar 

  135. Garcia-Cruz, A., Aguilar-Gonzalez, C. N., Rincon-Enriquez, G., Ilyina, A., Guizar-Gonzalez, C., Mtz-Enriquez, A. I., Diaz-Jimenez, L., Quinones-Aguilar, E. E., Enriquez-Vara, J., & Ramos-Gonzalez, R. (2019). Bactericidal In-Vitro Effect of Zinc Ferrite Nanoparticles and the Orange Wax Extracts on Three Phytopathogen Microorganisms. IEEE Transactions on Nanobioscience, 18, 528–534. https://doi.org/10.1109/TNB.2019.2937840

    Article  PubMed  Google Scholar 

  136. Sharma, R. P., Raut, S. D., Jadhav, V. V., Kadam, A. S., & Mane, R. S. (2019). Anti-candida and anti-adhesion efficiencies of zinc ferrite nanoparticles. Materials Letters, 237, 165–167. https://doi.org/10.1016/j.matlet.2018.11.073

    Article  CAS  Google Scholar 

  137. Omelyanchik, A., Levada, K., Pshenichnikov, S., Abdolrahim, M., Baricic, M., Kapitunova, A., Galieva, A., Sukhikh, S., Astakhova, L., & Antipov, S. (2020). Green synthesis of co-zn spinel ferrite nanoparticles: Magnetic and intrinsic antimicrobial properties. Materials (Basel)., 13, 5014. https://doi.org/10.3390/ma13215014

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  138. Haghniaz, R., Rabbani, A., Vajhadin, F., Khan, T., Kousar, R., Khan, A. R., Montazerian, H., Iqbal, J., Libanori, A., Kim, H.-J., & Wahid, F. (2021). Anti-bacterial and wound healing-promoting effects of zinc ferrite nanoparticles. Journal of Nanobiotechnology, 19, 38. https://doi.org/10.1186/s12951-021-00776-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Sharma, R. P., Raut, S. D., Kadam, A. S., Mulani, R. M., & Mane, R. S. (2020). In-vitro antibacterial and anti-biofilm efficiencies of chitosan-encapsulated zinc ferrite nanoparticles. Applied Physics A, 126, 824. https://doi.org/10.1007/s00339-020-04007-1

    Article  CAS  Google Scholar 

  140. Sriramulu, M., Shukla, D., & Sumathi, S. (2018). Aegle marmelos leaves extract mediated synthesis of zinc ferrite: Antibacterial activity and drug delivery. Materials Research Express, 5, 115404. https://doi.org/10.1088/2053-1591/aadd88

    Article  CAS  ADS  Google Scholar 

  141. Vinuthna, C. H., Chandra Babu Naidu, K., & Dachepalli, C. S. C. R. (2019). Magnetic and antimicrobial properties of cobalt-zinc ferrite nanoparticles synthesized by citrate-gel method. International Journal of Applied Ceramic Technology, 16, 1944–1953. https://doi.org/10.1111/ijac.13276

    Article  CAS  Google Scholar 

  142. Rahmayeni, Febrialita, R., Stiadi, Y., Putri, Y. E., Sofyan, N., & Zulhadjri. (2021). Simbang Darah (Iresineherbstii) extract mediated hydrothermal method in the synthesis of zinc ferrite spinel nanoparticles used for photocatalysis and antibacterial applications. Journal of Environmental Chemical Engineering, 9, 105140. https://doi.org/10.1016/j.jece.2021.105140

    Article  CAS  Google Scholar 

  143. Ashour, A. H., El-Batal, A. I., Maksoud, M. I. A. A., El-Sayyad, G. S., Labib, S., Abdeltwab, E., & El-Okr, M. M. (2018). Antimicrobial activity of metal-substituted cobalt ferrite nanoparticles synthesized by sol–gel technique. Particuology., 40, 141–151. https://doi.org/10.1016/j.partic.2017.12.001

    Article  CAS  Google Scholar 

  144. Mayor, S. (2017). Pollution is linked to one in six deaths worldwide, study estimates. BMJ, 359. https://doi.org/10.1136/BMJ.J4844

  145. Venturini, J. (2019). Application of Ferrite Nanoparticles in Wastewater Treatment. In: A.A. Kopp (Ed.), Nanomaterials for Eco-Friendly Applications. Engineering Materials. Springer. https://doi.org/10.1007/978-3-030-26810-7_9.

  146. Kefeni, K. K., Mamba, B.B., & Msagati, T. A. M. (2017). Application of spinel ferrite nanoparticles in water and wastewater treatment: A review. Separation and Purification Technology, 188. https://doi.org/10.1016/j.seppur.2017.07.015

  147. Yaqoob, A. A., Parveen, T., Umar, K., & Mohamad Ibrahim, M. N. (2020). Role of nanomaterials in the treatment of wastewater: A review. Water, 12. https://doi.org/10.3390/w12020495

  148. Wu, C., Xu, Y., Xu, S., Tu, J., Tian, C., & Lin, Z. (2019). Enhanced adsorption of arsenate by spinel zinc ferrite nano particles: Effect of zinc content and site occupation. Journal of Environmental Sciences, 79, 248–255. https://doi.org/10.1016/J.JES.2018.09.010

    Article  CAS  Google Scholar 

  149. Ajormal, F., Moradnia, F., TaghaviFardood, S., Ramazani, A. (2020). Zinc Ferrite Nanoparticles in Photo-Degradation of Dye: Mini-Review. Journal of Chemical Reviews, 2, 90–102. https://doi.org/10.33945/SAMI/JCR.2020.2.2.

  150. Afkhami, A., Sayari, S., Moosavi, R., & Madrakian, T. (2015). Magnetic nickel zinc ferrite nanocomposite as an efficient adsorbent for the removal of organic dyes from aqueous solutions. Journal of Industrial and Engineering Chemistry, 21, 920–924. https://doi.org/10.1016/J.JIEC.2014.04.033

    Article  CAS  Google Scholar 

  151. Mandal, S., Natarajan, S., Tamilselvi, A., & Mayadevi, S. (2016). Photocatalytic and antimicrobial activities of zinc ferrite nanoparticles synthesized through soft chemical route: A magnetically recyclable catalyst for water/wastewater treatment. Journal of Environmental Chemical Engineering, 4, 2706–2712. https://doi.org/10.1016/J.JECE.2016.05.020

    Article  CAS  Google Scholar 

  152. Vazquez-Olmos, A. R., Abatal, M., Sato-Berru, R. Y., Pedraza-Basulto, G. K., Garcia-Vazquez, V., Sainz-Vidal, A., Perez-Bañuelos, R., & Quiroz, A. (2016). Mechanosynthesis of MFe2O4 (M = Co, Ni, and Zn) Magnetic nanoparticles for Pb removal from aqueous solution. Journal of Nanomaterials, 2016. https://doi.org/10.1155/2016/9182024

  153. Sadighian, S., Abbasi, M., Arjmandi, S. A., & Karami, H. (2018). Dye removal from water by zinc ferrite-graphene oxide nanocomposite. Progress in Color, Colorants and Coatings, 11, 85–92. https://doi.org/10.30509/PCCC.2018.75743

  154. Chahar, D., Taneja, S., Bisht, S., Kesarwani, S., Thakur, P., Thakur, A., & Sharma, P. B. (2021). Photocatalytic activity of cobalt substituted zinc ferrite for the degradation of methylene blue dye under visible light irradiation. Journal of Alloys and Compounds, 851, 156878. https://doi.org/10.1016/J.JALLCOM.2020.156878

    Article  CAS  Google Scholar 

  155. Zhang, F., Wei, C., Hu, Y., Wu, H. (2015). Zinc ferrite catalysts for ozonation of aqueous organic contaminants: phenol and bio-treated coking wastewater. Separation and Purification Technology, 156. https://doi.org/10.1016/j.seppur.2015.10.058.

  156. Gu, W., **e, Q., Qi, C., Zhao, L., & Wu, D. (2016). Phosphate removal using zinc ferrite synthesized through a facile solvothermal technique. Powder Technology, 301, 723–729. https://doi.org/10.1016/J.POWTEC.2016.07.015

    Article  CAS  Google Scholar 

  157. Das, K. C., & Dhar, S. S. (2020). Removal of cadmium(II) from aqueous solution by hydroxyapatite-encapsulated zinc ferrite (HAP/ZnFe2O4) nanocomposite: Kinetics and isotherm study. Environmental Science and Pollution Research, 27, 37977–37988. https://doi.org/10.1007/S11356-020-09832-8

    Article  CAS  PubMed  Google Scholar 

  158. Ignat, M., Samoila, P., Cojocaru, C., Sacarescu, L., & Harabagiu, V. (2016). Novel Synthesis Route for Chitosan-Coated Zinc Ferrite Nanoparticles as Potential Sorbents for Wastewater Treatment. Chemical Engineering Communications, 203, 1591–1599. https://doi.org/10.1080/00986445.2016.1185711

    Article  CAS  Google Scholar 

  159. Karthikeyan, P., Sirajudheen, P., Nikitha, M. R., & Meenakshi, S. (2020). Removal of phosphate and nitrate via a zinc ferrite@activated carbon hybrid composite under batch experiments: Study of isotherm and kinetic equilibriums. Environmental Nanotechnology, Monitoring & Management, 14, 100378. https://doi.org/10.1016/J.ENMM.2020.100378

    Article  Google Scholar 

  160. Liu, S.-Q., Zhu, X.-L., Zhou, Y., Meng, Z.-D., Chen, Z.-G., Liu, C.-B., Chen, F., Wu, Z.-Y., & Qian, J.-C. (2017). Smart photocatalytic removal of ammonia through molecular recognition of zinc ferrite/reduced graphene oxide hybrid catalyst under visible-light irradiation. Catalysis Science & Technology, 7, 3210–3219. https://doi.org/10.1039/C7CY00797C

    Article  CAS  Google Scholar 

  161. Ma, J., Wang, H., Zhang, M., Li, D., Liu, L., & Yang, H. (2020). Preparation of terpyridine-functionalized paramagnetic nickel–zinc ferrite microspheres for adsorbing Pb( ii ), Hg( ii ), and Cd( ii ) from water. RSC Advances, 10, 39468–39477. https://doi.org/10.1039/D0RA06746F

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  162. Nair, D. S., & Kurian, M. (2017). Heterogeneous catalytic oxidation of persistent chlorinated organics over cobalt substituted zinc ferrite nanoparticles at mild conditions: Reaction kinetics and catalyst reusability studies. Journal of Environmental Chemical Engineering, 5, 964–974. https://doi.org/10.1016/J.JECE.2017.01.021

    Article  CAS  Google Scholar 

  163. Ahangari, A., Raygan, S., & Ataie, A. (2019). Capabilities of nickel zinc ferrite and its nanocomposite with CNT for adsorption of arsenic (V) ions from wastewater. Journal of Environmental Chemical Engineering, 7, 103493. https://doi.org/10.1016/J.JECE.2019.103493

    Article  CAS  Google Scholar 

  164. Mahmoodi, N. M. (2015). Surface modification of magnetic nanoparticle and dye removal from ternary systems. Journal of Industrial and Engineering Chemistry, 27, 251–259. https://doi.org/10.1016/J.JIEC.2014.12.042

    Article  CAS  Google Scholar 

  165. Makofane, A., Motaung, D. E., & Hintsho-Mbita, N. C. (2021). Photocatalytic degradation of methylene blue and sulfisoxazole from water using biosynthesized zinc ferrite nanoparticles. Ceramics International, 47, 22615–22626. https://doi.org/10.1016/J.CERAMINT.2021.04.274

    Article  CAS  Google Scholar 

  166. Rostami, M., Zamani, R. M., Aghajanzadeh, K. M., & Danafar, H. (2018). Sol–gel synthesis and characterization of zinc ferrite–graphene nano-hybrids for photo-catalytic degradation of the paracetamol. Journal of Pharmaceutical Investigation, 48, 657–664. https://doi.org/10.1007/s40005-017-0362-4

    Article  CAS  Google Scholar 

  167. Chauhan, S., Al-Dayan, N., Kumar, R., Chander Chabattula, S., Sahni, M., Ranjithkumar, R., & Kumar Gupta, P. (2022). Synthesis and characterization of novel bimetallic-semi-aromatic polyester nanocomposite for possible biomedical use. Materials Letters, 306, 130943. https://doi.org/10.1016/J.MATLET.2021.130943

    Article  CAS  Google Scholar 

  168. Kumar, R., Gupta, P. K., Pandit, S., Jha, N. K., Ruokolainen, J., Kesari, K. K., … Narayanan, S. S. (2022). Synthesis and characterization of biocompatible bimetallic-semi-aromatic polyester hybrid nanocomposite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 633, 127845. https://doi.org/10.1016/j.colsurfa.2021.127845.

  169. Anjitha, T., Anilkumar, T., Mathew, G., & Ramesan, M. T. (2019). Zinc ferrite @ polyindole nanocomposites: Synthesis, characterization and gas sensing applications. Polymer Composites, 40(7), 2802–2811. https://doi.org/10.1002/PC.25088

    Article  CAS  Google Scholar 

  170. Kurian, M., & Nair, D. S. (2015). Manganese zinc ferrite nanoparticles as efficient catalysts for wet peroxide oxidation of organic aqueous wastes. Journal of Chemical Sciences, 127, 537–546. https://doi.org/10.1007/S12039-015-0806-1

    Article  CAS  Google Scholar 

  171. Maddah, B., Yavaripour, A., Ramedani, S. H., Hosseni, H., & Hasanzadeh, M. (2020). Electrospun PU nanofiber composites based on carbon nanotubes decorated with nickel-zinc ferrite particles as an adsorbent for removal of hydrogen sulfide from air. Environmental Science and Pollution Research, 27, 35515–35525. https://doi.org/10.1007/S11356-020-09324-9

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Jivesh Garg—Writing – Original draft, Review &Editing, Artwork.

Mei Nee Chiu - Writing – Original draft, Review &Editing, Artwork

Saravanan Krishnan - Writing – Review & Editing

Rohit Kumar - Artwork –Figures, Writing – Review &Editing

Mahwish Rifah- Writing – Review &Editing

Priyanca Ahlawat - Writing – Review & Editing

Kavindra Kumar Kesari - Writing – Review &Editing

Janne Ruokolainen - Writing – Review & Editing

Piyush Kumar Gupta - Writing – Original draft, Review & Editing, Artwork –Figures, Conceptualization, Visualization, Project administration

Corresponding author

Correspondence to Piyush Kumar Gupta.

Ethics declarations

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent to Publish

All authors have read the manuscript and agreed to publish in the journal.

Competing Interests

The authors declare that they have no known competing financial interests or personal relationships that could have influenced the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garg, J., Chiu, M.N., Krishnan, S. et al. Emerging Trends in Zinc Ferrite Nanoparticles for Biomedical and Environmental Applications. Appl Biochem Biotechnol 196, 1008–1043 (2024). https://doi.org/10.1007/s12010-023-04570-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-023-04570-2

Keywords

Navigation