Log in

Phytochemicals, Antioxidant, Anti-inflammatory Studies, and Identification of Bioactive Compounds Using GC–MS of Ethanolic Novel Polyherbal Extract

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Hyperglycemia is the hallmark of diabetes, which is a collection of related metabolic disorders. Over time, diabetes can cause a variety of problems, including cardiovascular disease, nephropathy, neuropathy, and retinopathy. Ethanolic novel polyherbal extract (PHE) was prepared by mixing equal amounts of the following ingredients: Terminalia chebula Retz. (TC), Terminalia bellerica Roxb. (TB), Berberis aristata DC. (BA), Nyctanthes arbostratis L. (NA), Premna integrifolia L. (PI), and Andrographis paniculata Nees. (AP). Analysis of PHE results revealed phytochemicals like glycosides, flavonoids, alkaloids, tannins, phytosterols, and saponins. The aim of the study was to prepare an ethanolic extract of PHE using the cold maceration technique, and identify bioactive molecules from gas chromatography–mass spectrometry (GC–MS) analysis, and evaluate biological responses by using in vitro studies like antioxidant and anti-inflammatory activity. PHE was found to contain a total of 35 phytochemicals in GC–MS of which 22 bioactive compounds were obtained in good proportion. There are a few new ones, including 2-buten-1-ol, 2-ethyl-4-(2, 2, 3-trimethyl-3-cyclopenten-1-yl (17.22%), 1, 2, 5, 6-tetrahydrobenzonitrile (4.26%), 4-piperidinamine, 2, 2, 6, 6-tetramethyl-(0.07%), undecanoic acid, 5-chloro-, chloromethyl ester (0.41%), are identified. Antioxidant activity was estimated using EC50 values of 392.143 µg/ml, which were comparable to the standard value of EC50 310.513 µg/ml obtained using DPPH. Antioxidant activity was estimated with EC50 392.143 µg/ml, comparable to standard EC50 310.513 µg/ml using DPPH. In vitro anti-inflammatory potential was found with IC50 of 91.449 µg/ml, comparable to standard IC50 89.451 µg/ml for membrane stabilization and IC50 of 36.940 µg/ml, comparable to standard IC50 35.723 µg/ml for protein denaturation assays. As a result, the findings of this study show an enrichment of bioactive phytochemicals that can be used to investigate biological activity. To better understand how diabetes receptors work, in silico studies like docking could be carried out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. International Diabetes Federation. (2021). IDF diabetes atlas, 10th edn. International Diabetes Federation

  2. World Health Organization. Diabetes. (2019). WHO. https://www.who.int/news-room/fact-sheets/detail/diabetes. Accessed 10 Nov 2021

  3. World Health Organization. Diabetes. (2019). https://www.who.int/india/Campaigns/and/events/world-diabetes-day. Accessed 30 Aug 2022

  4. Tan, W. S., Arulselvan, P., Ng, S. F., Mat Taib, C. N., Sarian, M. N., & Fakurazi, S. (2019). Improvement of diabetic wound healing by topical application of vicenin-2 hydrocolloid film on Sprague Dawley rats. BMC Complementary Medicine and Therapies, 19(1), 20.

    Article  Google Scholar 

  5. Horakova, O., Kroupova, P., Bardova, K., Buresova, J., Janovska, P., Kopecky, J., & Rossmesisl, M. (2019). Metformin acutely lowers blood glucose levels by inhibition of intestinal glucose transport. Scientific Reports, 9, 6156.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Lipska, K. J., Bailey, C. J., & Inzucchi, S. E. (2011). Use of metformin in the setting of mild-to-moderate renal insufficiency. Diabetes Care, 34, 1431–1437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Majhi, S., Singh, L., Verma, M., Chauhan, I., kumari, R., & Sharma, M. (2022). In-vivo evaluation and formulation development of polyherbal extract in streptozotocin-induced diabetic rat. Phytomedicine Plus, 2(4), 100337. https://doi.org/10.1016/j.phyplu.2022.100337. 2667-0313.

    Article  Google Scholar 

  8. Rahman, M. M., Islam, M. R., Shohag, S., Hossain, M. E., Rahaman, M. S., Islam, F., Ahmed, M., Mitra, S., Khandaker, M. U., Idris, A. M., Chidambaram, K., Emran, T. B., & Cavalu, S. (2022). The multifunctional role of herbal products in the management of diabetes and obesity: A comprehensive review. Molecules, 27, 1713. https://doi.org/10.3390/molecules27051713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mutha, R. E., Tatiya, A. U., & Surana, S. J. (2021). Flavonoids as natural phenolic compounds and their role in therapeutics: An overview. Future Journal of Pharmaceutical Sciences, 7, 25.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Ankul Singh, S., & Vellapandian, C. (2022). Phytochemical studies, antioxidant potential, and identification of bioactive compounds using GC–MS of the ethanolic extract of Luffa cylindrica (L.) fruit. Applied Biochemistry and Biotechnology, 1–15. https://doi.org/10.1007/s12010-022-03961-1

  11. Joshi, P., Yadaw, G. S., Joshi, S., Semwal, R. B., & Semwal, D. K. (2020). Antioxidant and anti-inflammatory activities of selected medicinal herbs and their poly herbal formulation. South African Journal of Botany, 130, 440–447. https://doi.org/10.1016/j.sajb.2020.01.031

    Article  CAS  Google Scholar 

  12. Huang, S. S., Chiu, C. S., Lin, T. H., Min-Min, L. M. M., Lee, C. Y., Chang, S. J., Wen-Chi, H. W. C., Huang, G. J., & Deng, J. S. (2013). Antioxidant and anti-inflammatory activities of aqueous extract of Centipeda minima. Journal of Ethnopharmacology, 147, 395–405. https://doi.org/10.1016/j.jep.2013.03.025

    Article  CAS  PubMed  Google Scholar 

  13. Bhattacharya, T., Soares, G. A. B., Chopra, H., Rahman, M. M., Hasan, Z., Swain, S. S., & Cavalu, S. (2022). Applications of phyto-nanotechnology for the treatment of neurodegenerative disorders. Materials, 15, 804. https://doi.org/10.3390/ma15030804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Subramani, P., Gan, S. T., & Sokkalingam, A. D. (2014). Polyherbal formulation: Concept of ayurveda. Pharmacognosy Review, 8(16), 73–80. https://doi.org/10.4103/0973-7847.134229

    Article  Google Scholar 

  15. Abbas, Z., Manoharan, A. L., Jagadeesan, G., Nataraj, G., Muniyandi, K., Sathyanarayanan, S., & Thangaraj, P. (2021). Evaluation of an edible polyherbal formulation against urinary tract infection pathogens, its antioxidant and anti-inflammatory potential. Biocatalysis and Agricultural Biotechnology, 35, 102104. https://doi.org/10.1016/j.bcab.2021.102104

    Article  CAS  Google Scholar 

  16. Miere, F., Vicas, S. I., Timar, A. V., Ganea, M., Zdrinca, M., Cavalu, S., Fritea, L., Vicas, L., Muresan, M., Pallag, A., & Dobjanschi, L. (2021). Preparation and characterization of two different liposomal formulations with bioactive natural extract for multiple applications. Processes, 9, 432. https://doi.org/10.3390/pr9030432

    Article  CAS  Google Scholar 

  17. Morris, D., Khurasany, M., Nguyen, T., Kim, J., Guilford, F., Mehta, R., Gray, D., Saviola, B., & Venketaraman, V. (2013). Glutathione and infection. Biochimica et Biophysica Acta, 1830, 3329–3349. https://doi.org/10.1016/j.bbagen.2012.10.012

    Article  CAS  PubMed  Google Scholar 

  18. Valko, M., Rhodes, C. J., Moncol, J., Izakovic, M., & Mazur, M. (2006). Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chemico-Biological Interactions, 160, 1–40. https://doi.org/10.1016/j.cbi.2005.12.009

    Article  CAS  PubMed  Google Scholar 

  19. Rao, C. V., Verma, A. R., Gupta, P. K., & Madhavan, V. K. (2007). Anti-inflammatory and anti-nociceptive activities of Fumaria indica whole plant extract in experimental animals. Acta Pharmaceutica, 57, 491–498. https://doi.org/10.2478/v10007-007-0039-z

    Article  CAS  PubMed  Google Scholar 

  20. Dunne, M. R., Mangan, B. A., Madrigal-Estebas, L., & Doherty, E. G. (2010). Preferential Th1 cytokine profile of phosphoantigen-stimulated human Vγ9Vδ2 T cells. Mediators of Inflammation, 1–11. https://doi.org/10.1155/2010/704941

  21. Onikanni, A. S., Lawal, B., Oyinloye, B. E., Mostafa-Hedeab, G., Alorabi, M., Cavalu, S., Olusola, A. O., Wang, C. H., & Batiha, G. E. (2022). Therapeutic efficacy of Clompanus pubescens leaves fractions via downregulation of neuronal cholinesterases/Na+-K(+)ATPase/IL-1 beta, and improving the neurocognitive and antioxidants status of streptozotocin-induced diabetic rats. Biomedicine & Pharmacotherapy, 148, 112730. https://doi.org/10.1016/j.biopha.2022.112730

    Article  CAS  Google Scholar 

  22. Nigam, M., Mishra, A. P., Adhikari-Devkota, A., Dirar, A. I., Hassan, M. M., Adhikari, A., Belwal, T., & Devkota, H. P. (2020). Fruits of Terminalia chebula Retz.: A review on traditional uses, bioactive chemical constituents and pharmacological activities. Phytotherapy research: PTR, 34(10), 2518–2533. https://doi.org/10.1002/ptr.6702

    Article  CAS  PubMed  Google Scholar 

  23. Krishna, S. P., & Perumal, A. (2020). Phytochemical investigation, antioxidant and antibacterial activities, and GC-MS analysis of ethanol extract of Terminalia chebula Retz. dried seeds. Adv Pharm J, 5(3), 92–102. https://doi.org/10.31024/apj.2020.5.3.3

    Article  CAS  Google Scholar 

  24. Kadian, R., Parle, M., & Yadav, M. P. (2014). Therapeutic potential and phytopharmacology of Terminalia bellerica. WJPPS, 3(10), 804–819.

    Google Scholar 

  25. Gupta, A., Kumar, R., & Pandey, A. K. (2020). Antioxidant and antidiabetic activities of Terminalia bellirica fruit in alloxan induced diabetic rats. South+A1443 African Journal of Botany, 130(308–315), 0254–6299. https://doi.org/10.1016/j.sajb.2019.12.010

    Article  CAS  Google Scholar 

  26. Hossain, M. S., Urbi, Z., Sule, A., & HafizurRahman, K. M. (2014). Andrographis paniculata (Burm. f.) Wall. ex Nees: A review of ethnobotany, phytochemistry, and pharmacology. TheScientificWorldJournal, 2014, 274905. https://doi.org/10.1155/2014/274905

    Article  PubMed  PubMed Central  Google Scholar 

  27. Rafi, M., Karomah, A. H., Heryanto, R., Septaningsih, D. A., Kusuma, W. A., Amran, M. B., Rohman, A., & Prajogo, B. (2022). Metabolite profiling of Andrographis paniculata leaves and stem extract using UHPLC-Orbitrap-MS/MS. Natural product research, 36(2), 625–629. https://doi.org/10.1080/14786419.2020.1789637

    Article  CAS  PubMed  Google Scholar 

  28. Thakur, M., Sharma, K., Mehta, S., Rai, S., Sharma, I., & Tripathi, A. (2020). Phytochemicals, antimicrobial and antioxidant potential of methanolic extract of Berberis aristata roots. Research Journal of Pharmacy and Technology, 13(12), 5763–5767. https://doi.org/10.5958/0974-360X.2020.01004.5

    Article  Google Scholar 

  29. Belwal, T., Bisht, A., Devkota, H. P., Ullah, H., Khan, H., Pandey, A., Bhatt, I. D., & Echeverría, J. (2020). Phytopharmacology and clinical updates of berberis species against diabetes and other metabolic diseases. Frontiers in Pharmacology, 11, 41. https://doi.org/10.3389/fphar.2020.00041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mendie, L. E., & Hemalatha, S. (2022). Bioactive Compounds from Nyctanthes arbor tristis Linn as potential inhibitors of janus kinases (JAKs) involved in rheumatoid arthritis. Applied Biochemistry and Biotechnology. https://doi.org/10.1007/s12010-022-04121-1

    Article  PubMed  PubMed Central  Google Scholar 

  31. Dewi, N. K. S. M., Fakhrudin, N., & Wahyuono, S. (2022). A comprehensive review on the phytoconstituents and biological activities of Nyctanthes arbor-tristis L. Journal of Applied Pharmaceutical Science, 12(08), 009–017. https://doi.org/10.7324/JAPS.2022.120802

    Article  CAS  Google Scholar 

  32. Singh, C., Prakash, C., Mishra, P., Tiwari, K. N., Mishra, S. K., More, R. S., Kumar, V., & Singh, J. (2019). Hepatoprotective efficacy of Premna integrifolia L. leaves against aflatoxin B1-induced toxicity in mice. Toxicon, 166, 88–100. https://doi.org/10.1016/j.toxicon.2019.05.014

    Article  CAS  PubMed  Google Scholar 

  33. Singh, C., Prakash, C., Tiwari, K. N., Mishra, S. K., & Kumar, V. (2018). Premna integrifolia ameliorates cyclophosphamide-induced hepatotoxicity by modulation of oxidative stress and apoptosis. Biomedicine & Pharmacotherapy, 107, 634–643. https://doi.org/10.1016/j.biopha.2018.08.039

    Article  CAS  Google Scholar 

  34. Sadiq, A., Rashid, U., Ahmad, S., Zahoor, M., Al Ajmi, M. F., Ullah, R., Noman, O. M., Ullah, F., Ayaz, M., Khan, I., Islam, Z. U., & Ali, W. (2020). Treating hyperglycemia from Eryngium caeruleum M. Bieb: In-vitro α-glucosidase, antioxidant, in-vivo antidiabetic and molecular docking-based approaches. Frontiers in Chemistry, 8, 558641. https://doi.org/10.3389/fchem.2020.558641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jasna, T. J., Jaiganesh, K. P., & Sreedharren, B. (2018). GC-MS analysis and antibacterial activity of Amherstia nobilis. W leaf extract. International Journal of Herbal Medidcine, 6(6), 101–105.

    Google Scholar 

  36. Devi, T. S., Karuppiah, V., Vidhyavathi, R. M., Kumar, P., Muthusamy, G., & Thangavel, K. (2021). Antifungal activity and molecular docking of phenol, 2,4-bis(1,1-dimethylethyl) produced by plant growth-promoting actinobacterium Kutzneria sp. strain TSII from mangrove sediments. Archives of Microbiology, 203, 4051–4064. https://doi.org/10.1007/s00203-021-02397-1

    Article  CAS  PubMed  Google Scholar 

  37. Yogeswari, S., Ramalakshmi, S., Neelavathy, R., & Muthumary, J. (2012). Identification and comparative studies of different volatile fractions from Monochaetia kansensis by GCMS. Global Journal of Pharmacology, 6(2), 65–71.

    Google Scholar 

  38. Begum, I. F., Mohankumar, R., Jeevan, M., & Ramani, K. (2016). GC–MS Analysis of bio-active molecules derived from Paracoccus pantotrophus FMR19 and the antimicrobial activity against bacterial pathogens and MDROs. Indian Journal of Microbiology, 56(4), 426–432. https://doi.org/10.1007/s12088-016-0609-1

    Article  CAS  Google Scholar 

  39. Restrepo, J., Colmenares, A. J., Mora, L. E., & Sánchez, R. (2013). Extraction, chemical composition and antimicrobial activity of the essential oils of Pipilongo (Piper tuberculatum) using supercritical carbon dioxide. Revista de Ciencias, 17, 45–56. https://doi.org/10.25100/rc.v17i3.478

    Article  Google Scholar 

  40. Kant, K., Lal, U. R., & Ghosh, M. (2019). Antibacterial activity with bacterial growth kinetics and GC-MS studies on leaf and tuber extracts of Arisaema tortuosum (Wall.) Schott. Indian Journal of Pharmaceutical Education and Research, 53(3), S280–S287. https://doi.org/10.5530/ijper.53.3s.98

    Article  CAS  Google Scholar 

  41. Bano, I., & Deora, G. S. (2019). Preliminary phytochemical screening and GC-MS analysis of methanolic leaf extract of Abutilon pannosum (Forst. F.) Schlect. from Indian Thar desert. Journal of Pharmacognosy and Phytochemistry, 8(1), 894–899.

    CAS  Google Scholar 

  42. Saxena, S., & Rao, P. B. (2021). Pharmacological and phytochemical assessment of Anagallis arvensis L. leaf extracts. Asian Journal Chemistry, 33(8), 1831–1841. https://doi.org/10.14233/ajchem.2021.23265

    Article  CAS  Google Scholar 

  43. Sudha, G., & Balasundaram, A. (2018). Determination of bioactive components in the methanolic extract of Padina pavonica using GC-MS technique. World Journal of Pharmaceutical Research, 7(12), 991–997. https://doi.org/10.20959/wjpr201812-12725

    Article  CAS  Google Scholar 

  44. Zayed, M. Z., & Samling, B. (2016). Phytochemical constituents of the leaves of Leucaena leucocephala from Malaysia. International Journal of Pharmacy and Pharmaceutical Sciences, 8(12), 173–179. https://doi.org/10.22159/ijpps.2016v8i12.11582

    Article  CAS  Google Scholar 

  45. Elamin, M. M., Abdelrahim, N. A., Elhag, D. E. A., Joseph, M. R. P., & Hamid, M. E. (2021). Bioactive pyrrole-pyrazine derivative from a novel Bacillus species and review of the literature. African Journal of Pharmacy and Pharmacology, 15(8), 138–151. https://doi.org/10.5897/AJPP2021.5241

    Article  Google Scholar 

  46. Javaid, A., Khan, I. H., & Ferdosi, M. F. H. (2021). Bioactive constituents of wild Cannabis sativa roots from Pakistan. Pakistan Journal of Weed Science Research, 27(3), 359–368.

    Article  Google Scholar 

  47. Budayatin, B., Waluyo, J., Wahyuni, D., & Dafik, D. (2021). Antibacterial effects of Pheretima javanica extract and bioactive chemical analysis using gas chromatography mass spectrum. Journal of Physics: Conference Series, 1751, 012055. https://doi.org/10.1088/1742-6596/1751/1/012055

    Article  CAS  Google Scholar 

  48. Ajanaku, C., Echeme, J., Mordi, R., Bolade, O., Okoye, S., Jonathan, H., & Ejilude, O. (2018). In-vitro antibacterial, phytochemical, antimycobacterial activities and GC-MS analyses of Bidens pilosa leaf extract. Journal of Microbiology Biotechnology and Food Sciences, 8(1), 721–725. https://doi.org/10.15414/jmbfs.2018.8.1.721-725

    Article  CAS  Google Scholar 

  49. Haleshappa, R., Patil, S. J., Usha, T., & Murthy, K. R. S. (2020). Phytochemicals, antioxidant profile and GC-MS analysis of ethanol extract of Simarouba glauca seeds. Asian Journal of Biological and Life Sciences, 9(3), 379–385. https://doi.org/10.5530/ajbls.2020.9.57

    Article  CAS  Google Scholar 

  50. Govindasamy, B., Dhayalan, A., Chinnaperumal, K., Paramasivam, D., Dilipkumar, A., Kannupaiyan, J., Perumal, S., & Pachiappan, P. (2019). Comparative extraction of Salmonella bongori derived metabolites and their toxicity on bacterial pathogens, mosquito-larvae, zebrafish-embryo and brine-shrimp: A modified approach. Ecotoxicology and Environmental Safety, 169, 192–206. https://doi.org/10.1016/j.ecoenv.2018.11.012

    Article  CAS  PubMed  Google Scholar 

  51. Saikarthik, J., Ilango, S., Vijayakumar, J., & Vijayaraghavan, R. (2017). Phytochemical analysis of methanolic extract of seeds of Mucuna pruriens by gas chromatography mass spectrometry. International Journal of Pharmaceutical Sciences and Research, 8(7), 2916–2921. https://doi.org/10.13040/IJPSR.0975-8232.8(7).2916-21

    Article  CAS  Google Scholar 

  52. Said, S. M., Obuid-Allah, A. H., Abd-Elatif El-Shimy, N., Ali, R. S., & Mahbob, M.-E. (2021). Analysis of amino acids, fatty acids and neurotoxins using gas chromatography-mass spectrometry in four scorpions species inhabiting New Valley Governorate, Egypt. Turkish Journal of Zoology, 45, 442–454. https://doi.org/10.3906/zoo-2103-41

    Article  CAS  Google Scholar 

  53. Usman, M. A., Usman, F. I., Abubakar, M. S., Salman, A. A., Adamu, A., & Ibrahim, M. A. (2021). Phytol suppresses parasitemia and ameliorates anaemia and oxidative brain damage in mice infected with Plasmodium berghei. Experimental Parasitology, 224, 108097. https://doi.org/10.1016/j.exppara.2021.108097

    Article  CAS  PubMed  Google Scholar 

  54. Payum, T. (2018). Phytocomposition and pharmacological importance of Paris polyphylla (Smith.) and needs of its conservation in Arunachal Pradesh, India. Archives of Agriculture and Environmental Science, 3(2), 143–150. https://doi.org/10.26832/24566632.2018.030207

    Article  Google Scholar 

  55. Jainab, N. H., & Raja, M. K. M. M. (2017). Antioxidant study of isolated chemical constituents from methanol extract of the Clerodendrum phlomidis leaf. World Journal of Pharmaceutical Research, 6(12), 1122–1133. https://doi.org/10.20959/wjpr201712-9784

    Article  CAS  Google Scholar 

  56. Sabu, M. C., & Kuttan, R. (2002). Anti-diabetic activity of medicinal plants and its relationship with their antioxidant property. Journal of Ethnopharmacology, 81, 155–160.

    Article  CAS  PubMed  Google Scholar 

  57. Rathor, L., Pant, A., Awasthi, H., Mani, D., & Pandey, R. (2017). An antidiabetic polyherbal phytomedicine confers stress resistance and extends lifespan in Caenorhabditis elegans. Biogerontology, 18(1), 131–147. https://doi.org/10.1007/s10522-016-9668-2

    Article  PubMed  Google Scholar 

  58. Srivastava, S., Lal, V. K., & Pant, K. K. (2012). Polyherbal formulations based on Indian medicinal plants as antidiabetic phytotherapeutics. Phytopharmacology, 2(1), 1–15.

    Google Scholar 

  59. Anandh, S. J. V., Kumarappan, M., Shanmuganathan, P., Vinayagam, S., Iyyankannu, & Narayanamurthy, U. (2019). Antidiabetic activity of Manomani chooranam aqueous extract on female wistar albino rats. International Journal of Basic & Clinical Pharmacology, 8(9), 2153–2157. https://doi.org/10.18203/2319-2003.ijbcp20194131

    Article  Google Scholar 

  60. Mahajan, S., Chauhan, P., Subramani, S. K., Anand, A., Borole, D., Goswamy, H., & Prasad, G.B.K.S. (2015). Evaluation of “GSPF kwath” a Gymnema sylvestre containing polyherbal formulation for the treatment of human type 2 diabetes mellitus. European Journal of Integrative Medicine,1–26. https://doi.org/10.1016/j.eujim.2015.01.003

  61. Parkhe, G., & Bharti, D. (2022). Development and evaluation of antidiabetic potential of polyherbal formulation in streptozotocin induced animal model. Journal of Advanced Scientific Research, 13(1), 181–187. https://doi.org/10.55218/JASR.202213120

    Article  CAS  Google Scholar 

  62. Chakraborty, S. (2022). Evaluation of antidiabetic activity of the polyherbal formulation (PF-4) in the management of madhumeha (diabetes mellitus). International Journal of Recent Advances in Multidisciplinary Topics, 3(5), 8–11.

    Google Scholar 

  63. Azwanida, N. N. (2015). A review on the extraction methods use in medicinal plants, principle, strength and limitation. Journal of Medicinal and Aromatic Plants, 4(3), 1–6. https://doi.org/10.4172/2167-0412.1000196

    Article  Google Scholar 

  64. Do, Q. D., Angkawijaya, A. E., Tran-Nguyen, P. L., Huynh, L. H., Soetaredjo, F. E., Ismadji, S., & Ju, Y.-H. (2014). Effect of extraction solvent on total phenol content, total flavonoids content, and antioxidant activity of Limnophila aromatic. Journal of Food and Drug Analysis, 22(3), 296–302. https://doi.org/10.1016/j.jfda.2013.11.001

    Article  CAS  PubMed  Google Scholar 

  65. Swamy, M. K., Sinniah, U. R., & Akhtar, M. S. (2015). In vitro pharmacological activities and GC-MS analysis of different solvent extracts of Lantana camara leaves collected from tropical region of Malaysia. Evidence Based Complementary and Alternative Medicine, 2015, 1–9. https://doi.org/10.1155/2015/506413

    Article  Google Scholar 

  66. Gonbad, R. A., Afzan, A., Karimi, E., Sinniah, U. R., & Swamy, M. K. (2015). Phytoconstituents and antioxidant properties among commercial tea (Camellia sinensis L.) clones of Iran. Electronic Journal of Biotechnology, 18, 433–438. https://doi.org/10.1016/j.ejbt.2015.08.007

    Article  Google Scholar 

  67. Iloki-Assanga, S. B., Lewis-Luján, L. M., Lara-Espinoza, C. L., Gil-Salido, A. A., Fernandez-Angulo, D., Rubio-Pino, J. L., & Haines, D. D. (2015). Solvent effects on phytochemical constituent profiles and antioxidant activities, using four different extraction formulations for analysis of Bucida buceras L. and Phoradendron californicum. BMC Research Notes, 8(396), 1–14. https://doi.org/10.1186/s13104-015-1388-1

    Article  CAS  Google Scholar 

  68. Esmaeili, A. K., Taha, R. M., Mohajer, S., & Banisalam, B. (2015). Antioxidant activity and total phenolic and flavonoid content of various solvent extracts from in vivo and in vitro grown Trifolium pratense L. (Red Clover). BioMed Research International, 2015, 1–11. https://doi.org/10.1155/2015/643285

    Article  CAS  Google Scholar 

  69. Kumar, G. P. S., Arulselvan, P., Kumar, D. S., & Subramanian, S. P. (2006). Anti-diabetic activity of fruits of Terminalia chebula on streptozotocin induced diabetic rats. Journal of Health Science, 52(3), 283–291. https://doi.org/10.1248/jhs.52.283

    Article  Google Scholar 

  70. Xu, Y., Tang, G., Zhang, C., Wang, N., & Feng, Y. (2021). Gallic acid and diabetes mellitus: Its association with oxidative stress. Molecules, 26, 7115. https://doi.org/10.3390/molecules26237115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Gupta, A., Kumar, R., & Pandey, A. K. (2020). Antioxidant and antidiabetic activities of Terminalia bellirica fruit in alloxan induced diabetic rats. South African Journal of Botany, 130, 308–315. https://doi.org/10.1016/j.sajb.2019.12.010

    Article  CAS  Google Scholar 

  72. Hossain, M. A., Roy, B. K., Ahmed, K., Chowdhury, A. M. S., & Rashid, M. A. (2007). Antidiabetic activity of Andrographis paniculata. Dhaka University Journal of Pharmaceutical Sciences, 6(1), 15–20. https://doi.org/10.3329/dujps.v6i1.338

    Article  Google Scholar 

  73. Nugroho, A. E., Andrie, M., Warditiani, N. K., Siswanto, E., Pramono, S., & Lukitaningsih, E. (2012). Antidiabetic and antihiperlipidemic effect of Andrographis paniculata (Burm. f.) Nees and andrographolide in high-fructose-fat-fed rats. Indian journal of pharmacology, 44(3), 377–381. https://doi.org/10.4103/0253-7613.96343

    Article  PubMed  PubMed Central  Google Scholar 

  74. Upwar, N., Patel, R., Waseem, N., & Mahobia, N. K. (2011). Hypoglycemic effect of methanolic extract of Berberis aristata DC stem on normal and streptozotocin induced diabetic rats. International Journal of Pharmacy and Pharmaceutical Sciences, 3(1), 222–224.

    Google Scholar 

  75. Choudhary, S., Kaurav, H., Madhusudan, S., & Chaudhary, G. (2021). Daruharidra (Berberis aristata): Review based upon its Ayurvedic properties. International Journal for Research in Applied Sciences and Biotechnology, 8(2), 98–106. https://doi.org/10.31033/ijrasb.8.2.12

    Article  Google Scholar 

  76. Husain, A., Tiwari, U., Sharma, V., Kumar, A., & Rais, N. (2010). Effect of Nyctanthes arbortristis linn. leaves against streptozotocin induced oxidative stress in rats. International Journal Of Pharma Professional’s Research, 1(1), 10–13.

    Google Scholar 

  77. Mishra, A. K., Tiwari, K. N., Saini, R., Kumar, P., Mishra, S. K., Yadav, V. B., & Nath, G. (2020). Green synthesis of silver nanoparticles from leaf extract of Nyctanthes arbor-tristis L. and assessment of its antioxidant, antimicrobial response. Journal of Inorganic and Organometallic Polymers and Materials, 30, 2266–2278. https://doi.org/10.1007/s10904-019-01392-w

    Article  CAS  Google Scholar 

  78. Mishra, A. K., Upadhyay, P., Chaurasia, J. K., & Tiwari, K. N. (2016). Comparative antioxidant study in different flower extracts of Nyctanthes arbor-tristis (L.) (Oleaceae): An important medicinal plant. Brazilian Journal of Botany, 39(3), 813–820. https://doi.org/10.1007/s40415-016-0283-x

    Article  Google Scholar 

  79. Mishra, A. K., Upadhyay, P., Dixit, J., Kumar, P., Tiwari, K. N., Mishra, S. K., More, R., & Singh, J. (2018). Ameliorative activity of ethanolic flower extract of Nyctanthes arbor-tristis (L.) against scopolamine-induced amnestic effect and profiling of active compounds using gas chromatography–mass spectrometry and ultra-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry. Pharmacognosy Magazine, 14, S596-604. https://doi.org/10.4103/pm.pm_448_18

    Article  CAS  Google Scholar 

  80. Mali, P. Y. (2016). Pharmacological potentials of Premna integrifolia L. Ancient Science of Life, 35, 132–142. https://doi.org/10.4103/0257-7941.179864

    Article  PubMed  PubMed Central  Google Scholar 

  81. Timotius, K. H., Simamora, A., & Santoso, A. W. (2018). Chemical characteristics and in vitro antidiabetic and antioxidant activities of Premna serratifolia L. leaf infusion and decoction. Pharmacognosy Journal, 10(6), 1114–8. https://doi.org/10.5530/pj.2018.6.189

    Article  CAS  Google Scholar 

  82. Singh, C., Upadhyay, R., & Tiwari, K. N. (2022). Comparative analysis of the seasonal influence on polyphenolic content, antioxidant capacity, identification of bioactive constituents and hepatoprotective biomarkers by in silico docking analysis in Premna integrifolia L. Physiology and Molecular Biology of Plants, 28(1), 223–249. https://doi.org/10.1007/s12298-021-01120-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Singh, C., Anand, S. K., Tiwari, K. N., Mishra, S. K., & Kakkar, P. (2021). Phytochemical profiling and cytotoxic evaluation of Premna serratifolia L. against human liver cancer cell line. 3 Biotech, 11, 115. https://doi.org/10.1007/s13205-021-02654-6

    Article  PubMed  PubMed Central  Google Scholar 

  84. Singh, C., Kumar, J., Kumar, P., Chauhan, B. S., Tiwari, K. N., Mishra, S. K., Srikrishna, S., Saini, R., Nath, G., & Singh, J. (2019). Green synthesis of silver nanoparticles using aqueous leaf extract of Premna integrifolia (L.) rich in polyphenols and evaluation of their antioxidant, antibacterial and cytotoxic activity. Biotechnology & Biotechnological Equipment, 33(1), 359–371. https://doi.org/10.1080/13102818.2019.1577699

    Article  CAS  Google Scholar 

  85. Bhatt, P., & Negi, P. S. (2012). Antioxidant and antibacterial activities in the leaf extracts of Indian Borage (Plectranthus amboinicus). Food Science and Nutrition, 3, 146–152. https://doi.org/10.4236/fns.2012.32022

    Article  Google Scholar 

  86. Ghosh, G., Panda, P., Rath, M., Pal, A., Sharma, T., & Das, D. (2015). GC-MS analysis of bioactive compounds in the methanol extract of Clerodendrum viscosum leaves. Pharmacognosy Research, 7(1), 110–113.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Song, Y. W., & Cho, S. K. (2015). Phytol induces apoptosis and ros-mediated protective autophagy in human gastric adenocarcinoma AGS cells. Biochemistry and Analytical Biochemistry, 4(4), 1–7. https://doi.org/10.4172/2161-1009.1000211

    Article  CAS  Google Scholar 

  88. Salih, L., Eid, F., Elhaw, M., & Hamed, A. (2021). In vitro cytotoxic, antioxidant, antimicrobial activity and volatile constituents of Coccoloba peltata Schott cultivated in Egypt. Egyptian Journal of Chemistry, 64(12), 7157–7163. https://doi.org/10.21608/ejchem.2021.87688.4229

    Article  Google Scholar 

  89. Liang, G.-P., Li, J.-X., Zhang, J., Zhang, M., Yang, J., Liang, G. P., & Wu, J. (2020). In vitro antitumor activities of biologically active extracts and isolated phytochemicals from Rabdosia latifolia C. Y. Wu Et H. W. Li in Addenda. Natural Product Communications, 15(5), 1–8. https://doi.org/10.1177/1934578X20926277

    Article  Google Scholar 

  90. Ayoub, I. M., Korinek, M., El-Shazly, M., Wetterauer, B., El-Beshbishy, H. A., Hwang, T. L., Chen, B. H., Chang, F. R., Wink, M., Singab, A., & Youssef, F. S. (2021). Anti-allergic, anti-inflammatory and anti-hyperglycemic activity of Chasmanthe aethiopica leaf extract and its profiling using LC/MS and GLC/MS. Plants (Basel, Switzerland), 10(6), 1118. https://doi.org/10.3390/plants10061118

    Article  CAS  PubMed  Google Scholar 

  91. Whesu, O. A., Ogunbamowo, P. O., Bankole, S. O., Awotedu, O. L., & Oyediran, R. I. (2021). Antibacterial activity and chemical profiling of Bombax glabrum (Pasq.) A. Robyns leaves. Journal of Medicinal Herbs, 12(2), 57–65. https://doi.org/10.30495/medherb.2021.684238

    Article  Google Scholar 

  92. Upadhyay, R., Chaurasia, J. K., Tiwari, K. N., & Singh, K. (2014). Antioxidant property of aerial parts and root of Phyllanthus fraternus Webster, an important medicinal plant. The Scientific World Journal, 2014, 1–7. https://doi.org/10.1155/2014/692392. 692392.

    Article  CAS  Google Scholar 

  93. Shinde, U. A., Phadke, A. S., Nair, A. M., Mungantiwar, A. A., Dikshit, V. J., & Saraf, M. N. (1999). Membrane stabilizing activity - A possible mechanism of action for the anti-inflammatory activity of Cedrus deodara wood oil. Fitoterapia, 70, 251–257.

    Article  CAS  Google Scholar 

  94. Anosike, C. A., Obidoa, O., & Ezeanyika, L. U. S. (2012). Membrane stabilization as a mechanism of the anti-inflammatory activity of methanol extract of garden egg (Solanum aethiopicum). DARU Journal of Pharmaceutical Sciences, 20(76), 1–7. http://www.darujps.com/content/20/1/76. Accessed 5 Aug 2022

  95. Saso, L., Valentini, G., Casini, M. L., Grippa, E., Gatto, M. T., Leone, G. M., & Silvestrini, B. (2001). Inhibition of heat-induced denaturation of albumin by nonsteroidal anti-inflammatory drugs (NSAIDs): Pharmacological implications. Archive of Pharmacal Research, 24(2), 150–158. https://doi.org/10.1007/BF02976483

    Article  CAS  Google Scholar 

  96. Saleem, A., Saleem, M., Akhtar, M. F., Shahzad, M., & Jahan, S. (2020). Moringa rivae leaf extracts attenuate complete Freund’s adjuvant-induced arthritis in Wistar rats via modulation of infammatory and oxidative stress biomarkers. Inflammopharmacology, 28, 139–151. https://doi.org/10.1007/s10787-019-00596-3

    Article  CAS  PubMed  Google Scholar 

  97. Hasan, M., Teng, Z., Iqbal, J., Awan, U., Meng, S., Dai, R., Qing, H., & Deng, Y. (2013). Assessment of bioreducing and stabilizing potential of dragon’s blood (Dracaena cochinchinensis, Lour. S. C. Chen) resin extract in synthesis of silver nanoparticles. Nanoscience and Nanotechnology Letters, 5(7), 780-784(5). https://doi.org/10.1166/nnl.2013.1600

    Article  CAS  Google Scholar 

  98. Hussain, R., Zafar, A., Hasan, M., Tariq, T., Saif, M. S., Waqas, M., Tariq, F., Anum, M., Anjum, S. I., & Shu, X. (2022). Casting zinc oxide nanoparticles using Fagonia blend microbial arrest. Applied biochemistry and biotechnology. https://doi.org/10.1007/s12010-022-04152-8

    Article  PubMed  PubMed Central  Google Scholar 

  99. Yousaf, A., Zafar, A., Ali, M., Bukhary, S. M., Manzoor, Y., Tariq, T., Saeed, A., Akram, M., Bukhari, F., Abdullah, M., Zehra, S. S., Hassan, S. G., & Hasan, M. (2019). Intrinsic bio-enhancer entities of Fagonia cretica for synthesis of silver nanoparticles involves anti-urease, anti-oxidant and anti-tyosinase activity. Advances in Bioscience and Biotechnology, 10, 455–468. https://doi.org/10.4236/abb.2019.1012032

    Article  CAS  Google Scholar 

  100. Zulfiqar, H., Zafar, A., Rasheed, M. N., Ali, Z., Mehmood, K., Mazher, A., Hasan, M., & Mahmood, N. (2018). Synthesis of silver nanoparticles using Fagonia cretica and their antimicrobial activities. Nanoscale advances, 1(5), 1707–1713. https://doi.org/10.1039/c8na00343b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Hasan, M., Zafar, A., Shahzadi, I., Luo, F., Hassan, S. G., Tariq, T., Zehra, S., Munawar, T., Iqbal, F., & Shu, X. (2020). Fractionation of biomolecules in Withania coagulans extract for bioreductive nanoparticle synthesis, antifungal and biofilm activity. Molecules (Basel, Switzerland), 25(15), 3478. https://doi.org/10.3390/molecules25153478

    Article  CAS  PubMed  Google Scholar 

  102. Mahmood, S., Fatima, T., Zulfaqar, H., Saher, R., Rafiq, M., Rehman, A., Dai, R., Ashfaq, M., & Hasan, M. (2017). Meta-analysis of dragon’s blood resin extract as radio-protective agent. Journal of Coastal Life Medicine, 409–416. https://doi.org/10.12980/JCLM.5.2017J7-75

Download references

Acknowledgements

The author is thankful to the Indian Institute of Technology (BHU) and MHRD, India, for fellowship. The authors thankfully acknowledge to Prof. Sushant Kumar Shrivastava formal Head of Department, Pharmaceutical Engineering and Technology, IIT (BHU) Varanasi-221 005, Uttar Pradesh, India, for guidance during the work. Kavindra Nath Tiwari thankfully acknowledges Banaras Hindu University, Varanasi for providing financial assistance through an incentive grant under the IoE scheme (6031) for research. P.K. is grateful for the fellowship support from RGNF, UGC, New Delhi. Vishnu D Rajput and Tatiana Minkina would like to acknowledge the support from the Ministry of Science and Higher Education of Russian Federation, agreement no. 075-15-2022-1122.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Amit Kumar Singh: conceptualization, methodology, and writing-original draft preparation. Pradeep Kumar: methodology, writing—original draft preparation, and investigation. Vishnu D Rajput: conceptualization, formal analysis, and validation. Sunil Kumar Mishra: conceptualization, methodology, formal analysis, and supervision. Kavindra Nath Tiwari: conceptualization, formal analysis, and validation. Anand Kumar Singh: formal analysis, investigation, and writing—review and editing. Tatiana Minkina: formal analysis, writing—review and editing, and validation. Ajay Kumar Pandey: formal analysis and validation.

Corresponding author

Correspondence to Sunil Kumar Mishra.

Ethics declarations

Ethical Approval

Not applicable.

Consent to Participate

Yes. All authors consent to participate.

Consent for Publication

Yes. All authors have approved the last version of the manuscript for its submission.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, A.K., Kumar, P., Rajput, V.D. et al. Phytochemicals, Antioxidant, Anti-inflammatory Studies, and Identification of Bioactive Compounds Using GC–MS of Ethanolic Novel Polyherbal Extract. Appl Biochem Biotechnol 195, 4447–4468 (2023). https://doi.org/10.1007/s12010-023-04363-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-023-04363-7

Keywords

Navigation