Log in

Enhanced Antibacterial Activity of Highly Biocompatible Polymeric Core–Shell Levofloxacin Gold Nanocomposite Formulation Against Pseudomonas aeruginosa

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Using natural and synthetic polymers as the components for the core–shell nanocomposite preparation has received recent attention in biomedicine due to their high biocompatibility, high efficacy, and biodegradability. In this present investigation, chitosan-polyvinyl alcohol core–shell gold nanocomposite was synthesised adopting green science principles followed by fabrication with fluoroquinolone antibiotic levofloxacin (LE-CS-PVA-AuNC). Core–shell nanocomposite was prepared from biogenic gold nanoparticles, chitosan, polyvinyl alcohol polymer mixture, and levofloxacin under optimum conditions, and the synthesised nanocomposite exhibited a highly stable nanoarchitecture. Enhancement of antibacterial activity of the nanocomposite was evaluated against the clinical strain of Pseudomonas aeruginosa by determination of growth inhibition, survival rate parameters, and biofilm inhibition rate. Levofloxacin-fabricated core–shell nanocomposite brought about higher growth inhibition than the free levofloxacin, which was confirmed by a notable zone of inhibition, growth inhibition at a lower concentration, rapid biofilm inhibitory rate, and changes in survival growth parameters. In vitro drug release pattern was studied by continuous dialysis, which reveals that the nanocomposite exhibited controlled, sustained release pattern and cumulative release reached almost 98.0% at 72 h. Biocompatibility was studied with human keratinocytes (HaCaT cell line), which was studied by measuring cell viability, oxidative stress marker protein, and genotoxicity. The tested nanocomposite was not inducing any sign of toxicity which was confirmed by no marked impact on cell viability, intracellular reduced glutathione, lipid peroxidase, and lactate dehydrogenase activity. In addition, the nanocomposite has not shown any toxic effect on DNA, and all findings indicate that the synthesised nanocomposite was compatible with human keratinocytes. LE-CS-PVA-AuNC synthesised in the present system adopting green science principles can be used in modern biomedicine as an effective and safe antimicrobial agent due to its high antimicrobial action against wound infection pathogens and its best compatibility with human keratinocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Data Availability

Data is available on request from the authors.

References

  1. Shah, N., & Gul, S. (2019). Mazhar Ul-Islam, Core-shell molecularly imprinted polymer nanocomposites for biomedical and environmental applications. Current Pharmaceutical Design, 25, 3633–3644. https://doi.org/10.2174/1381612825666191009153259

    Article  CAS  PubMed  Google Scholar 

  2. Wei, S., Wang, Q., Zhu, J., Sun, L., Lin, H., & Guo, Z. (2011). Multifunctional composite core-shell nanoparticles. Nanoscale, 3, 4474–4502. https://doi.org/10.1039/c1nr11000d

    Article  CAS  PubMed  Google Scholar 

  3. Saleh, H. H., Ali, Z. I., & Afify, T. A. (2016). Synthesis of Ag/PANI core-shell nanocomposites using ionizing radiation. Advances in Polymer Technology, 35, 335–344. https://doi.org/10.1002/adv.21560

    Article  CAS  Google Scholar 

  4. Ramesh, A., Tamizhdurai, P., Gopinath, S., Sureshkumar, K., Murugan, E., Shanthi K. (2019). Facile synthesis of core-shell nanocomposites Au catalysts towards abatement of environmental pollutant Rhodamine B, Heliyon. 5. https://doi.org/10.1016/j.heliyon.2018.e01005.

  5. Dobrucka, R., & Dlugaszewska, J. (2018). Antimicrobial activity of the biogenically synthesised core-shell Cu@Pt nanoparticles. Saudi Pharmaceutical Journal, 26, 643–650. https://doi.org/10.1016/j.jsps.2018.02.028

    Article  PubMed  PubMed Central  Google Scholar 

  6. Y. Qiao, W. Li, J. Bao, Y. Zheng, L. Feng, Y. Ma, K. Yang, A. Wu, H. Bai, Y. Yang, Controlled synthesis, and luminescence properties of core-shell-shell structured SiO2@AIPA-S-Si-Eu@SiO2 and SiO2@AIPA-S-Si-Eu-phen@SiO2 nanocomposites. Scientific Reports 10 (2020). https://doi.org/10.1038/s41598-020-60538-w.

  7. Cortese, B., D’Amone, S., Testini, M, Ratano, P., Palamà I.E. (2019). Hybrid clustered nanoparticles for chemo-antibacterial combinatorial cancer therapy, Cancers (Basel). 11. https://doi.org/10.3390/cancers11091338.

  8. W. Su, Y. Hu, M. Zeng, M. Li, S. Lin, Y. Zhou, J. **e, Design and evaluation of nano-hydroxyapatite/poly(vinyl alcohol) hydrogels coated with poly(lactic-co-glycolic acid)/nano-hydroxyapatite/poly(vinyl alcohol) scaffolds for cartilage repair, Journal of Orthopaedic Surgery and Research 14 (2019). https://doi.org/10.1186/s13018-019-1450-0.

  9. Fathollahipour, S., Abouei Mehrizi, A., Ghaee, A., Koosha, M. (2015). Electrospinning of PVA/chitosan nanocomposite nanofibers containing gelatin nanoparticles as a dual drug delivery system. Journal of Biomedical Materials Research - Part A. 103, 3852–3862. https://doi.org/10.1002/jbm.a.35529.

  10. Rabel, A. M., Namasivayam, S. K. R., Prasanna, M., & Bharani, R. S. A. (2019). A green chemistry to produce iron oxide–chitosan nanocomposite (CS-IONC) for the upgraded bio-restorative and pharmacotherapeutic activities — Supra molecular nanoformulation against drug-resistant pathogens and malignant growth. International Journal of Biological Macromolecules, 138, 1109–1129. https://doi.org/10.1016/j.ijbiomac.2019.07.158

    Article  CAS  PubMed  Google Scholar 

  11. Dabbagh, A., Hedayatnasab, Z., Karimian, H., Sarraf, M., Yeong, C. H., Madaah Hosseini, H. R., & Rahman, N. A. (2019). Polyethylene glycol-coated porous magnetic nanoparticles for targeted delivery of chemotherapeutics under magnetic hyperthermia condition. International Journal of Hyperthermia, 36(1), 104–114. https://doi.org/10.1080/02656736.2018.1536809

    Article  CAS  PubMed  Google Scholar 

  12. Kumar, K. S., Kumar, V. B., & Paik, P. (2013). Recent advancement in functional core-shell nanoparticles of polymers: Synthesis, physical properties, and applications in medical biotechnology. J. Nanoparticles., 2013, 1–24. https://doi.org/10.1155/2013/672059

    Article  CAS  Google Scholar 

  13. Vijayalekshmi, V. (2015). UV-visible, mechanical and antimicrobial studies of chitosan-montmorillonite clay/TiO2 nanocomposites, Research Journal of Recent Sciencs 1–5.

  14. Borah, D., Hazarika, M., Tailor, P., Silva, A. R., Chetia, B., Singaravelu, G., & Das, P. (2018). Starch-templated bio-synthesis of gold nanoflowers for in vitro antimicrobial and anticancer activities. Applied Nanoscience, 8, 241–253. https://doi.org/10.1007/s13204-018-0793-x

    Article  CAS  Google Scholar 

  15. Mahmood, T., Hussain, S. T., & Malik, S. A. (2010). New nanomaterial, and process for the production of biofuel from metal hyper accumulator water hyacinth, African. Journal of Biotechnology, 9, 2381–2391. https://doi.org/10.5897/AJB2010.000-3047

    Article  CAS  Google Scholar 

  16. Munive-Olarte, A., Rosano-Ortega, G., Schabes-Retchkiman, P., Martinez-Gallegos, M.S.M., El Kassis, E., Gonzalez-Perez, M., Pacheco-Garcia, F. (2017). Assessment of biomass of leaves of water hyacinth (Eichhornia crassipes) as reducing agents for the synthesis of nanoparticles of gold and silver. International Journal of Advanced Engineering Management Science 3, 364–370. https://doi.org/10.24001/ijaems.3.4.14.

  17. Rosano-Ortega, G., Avila-Pérez, P., Zavala, G., Santiago, P., Canizal, G., & Ascencio, J. A. (2008). Inorganic nanoparticles induced naturally in water hyacinth: Structural and chemical study. Journal Bionanoscience., 1, 51–59. https://doi.org/10.1166/jbns.2007.001

    Article  Google Scholar 

  18. Vanathi, P., Rajiv, P., & Sivaraj, R. (2016). Synthesis, and characterisation of Eichhornia-mediated copper oxide nanoparticles and assessing their antifungal activity against plant pathogens. Bulletin of Materials Science, 39, 1165–1170. https://doi.org/10.1007/s12034-016-1276-x

    Article  CAS  Google Scholar 

  19. Hemalatha, S., & Makeswari, M. (2017). Green synthesis, characterisation, and antibacterial studies of CuO nanoparticles from Eichhornia crassipes. Rasayan Journal of Chemistry, 10, 838–843. https://doi.org/10.7324/RJC.2017.1031800

    Article  CAS  Google Scholar 

  20. Cuervo Blanco, T., Sierra Ávila, C.A., Zea Ramírez, H.R. (2016). Nanostructured MnO2 catalyst in E. crassipes (water hyacinth) for indigo carmine degradation, Rev. Colomb. Química. 45, 30. https://doi.org/10.15446/rev.colomb.quim.v45n2.60395.

  21. Silva, A., Martínez-Gallegos, S., Rosano-Ortega, G., Schabes-Retchkiman, P., Vega-Lebrún, C., Albiter, V. (2017). Nanotoxicity for E. coli and characterisation of silver quantum dots produced by biosynthesis with Eichhornia crassipes, Journal Nanostructures. 7, 1–12. https://doi.org/10.22052/jns.2017.01.001.

  22. Mochochoko, T., Oluwafemi, O. S., Jumbam, D. N., & Songca, S. P. (2013). Green synthesis of silver nanoparticles using cellulose extracted from an aquatic weed; Water hyacinth. Carbohydrate Polymers, 98, 290–294. https://doi.org/10.1016/j.carbpol.2013.05.038

    Article  CAS  PubMed  Google Scholar 

  23. Jankie, S., Adebayo, A., & Pillai, G. (2012). In vitro activity of fluoroquinolones entrapped in non-ionic surfactant vesicles against ciprofloxacin resistant bacteria strains. Journal of pharmaceutical technology and Drug Research, 1, 1–5.

    Google Scholar 

  24. Hu, L., Zhu, B., Zhang, L., Yuan, H., Zhao, Q., & Yan, Z. (2019). Chitosan-gold nanocomposite and its functionalised paper strips for reversible visual sensing and removal of trace Hg2+ in practice. The Analyst, 144, 474–480. https://doi.org/10.1039/c8an01707g

    Article  CAS  PubMed  Google Scholar 

  25. Kuo, T. Y., Jhang, C. F., Lin, C. M., Hsien, T. Y., & Hsieh, H. J. (2017). Fabrication and application of coaxial polyvinyl alcohol/chitosan nanofiber membranes. Open Phys., 15, 1004–1014. https://doi.org/10.1515/phys-2017-0125

    Article  CAS  Google Scholar 

  26. Samanta, S., Das, G., Araphder, S. T. (2012). Multi drug resistant Pseudomonas aeruginosa from wild hanuman langur in India. Journal of Biomedical Science 1, 1–3

  27. El Mahmood, A. M., & Doughari, J. H. (2008). Effect of Dettol® on the viability of some microorganisms associated with nosocomial infections. African J. Biotechnol. https://doi.org/10.5897/AJB08.052

    Article  Google Scholar 

  28. Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. Journal of Immunological Methods. 55–63. https://doi.org/10.1016/0022-1759(83)90303-4.

  29. Li, L., Zhang, M., Song, S., Yang, B., Wu, Y., & Yang, Q. (2018). Preparation of core/shell structured silicate composite filler and its reinforcing property. Powder Technology, 332, 27–32. https://doi.org/10.1016/j.powtec.2018.03.037

    Article  CAS  Google Scholar 

  30. Gholipour, A.K., Bahrami, S.H., Nouri, M. (2009). Chitosan-poly (vinyl alcohol) blend nanofibers: Morphology, biological and antimicrobial properties, E-Polymers. https://doi.org/10.1515/epoly.2009.9.1.1580.

  31. Cove, J. H., & Holland, K. T. (1983). The effect of benzoyl peroxide on cutaneous microorganisms in vitro. Journal of Applied Bacteriology, 54, 379–382. https://doi.org/10.1111/j.1365-2672.1983.tb02631.x

    Article  CAS  PubMed  Google Scholar 

  32. Parai, D., Islam, E., Mitra, J., & Mukherjee, S. K. (2017). Effect of Bacoside A on growth and biofilm formation by Staphylococcus aureus and Pseudomonas aeruginosa. Canadian Journal of Microbiology, 63, 169–178. https://doi.org/10.1139/cjm-2016-0365

    Article  CAS  PubMed  Google Scholar 

  33. Karthick, S., Raja. Namasivayam, Roy, E.A. (2013). Enhanced antibiofilm activity of chitosan stabilized chemogenic silver nanoparticles against Escherichia coli, International Journal of Scientific and Research Publication 1–9.

  34. Karthick Raja Namasivayam, S., Francis, A.L., Arvind Bharani, R.S., Nachiyar, C.V. (2019). Bacterial biofilm, or biofouling networks with numerous resilience factors from real water supplies of Chennai and their enhanced susceptibility to biocompatible nanoparticles. Journal of Cleaner Production https://doi.org/10.1016/j.jclepro.2019.05.199.

  35. Alarifi, S., Ali, D., Verma, A., Alakhtani, S., Ali, BA. (2013). cytotoxicity, and genotoxicity of copper oxide nanoparticles in human skin keratinocytes cells. International Journal of Toxicology 296–307. https://doi.org/10.1177/1091581813487563

Download references

Acknowledgements

Centre for Nanoscience & Nanotechnology, SIST, Chennai, was acknowledged for the characterisation studies.

Author information

Authors and Affiliations

Authors

Contributions

S. K. R. N., M. M.: conceptualisation, data curation, supervision, writing — review and editing; L. V.: supervision, writing — review and editing; K. S.: data curation, conceptualisation; M. K.: project administration, validation, writing — original draft; R. S. A. B.: supervision, validation, conceptualisation.

Corresponding author

Correspondence to Meivelu Moovendhan.

Ethics declarations

Ethical Approval

In this study, the animal experiment was not applicable.

Consent to Participate

In this study, animals and human trials are not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

S. Karthick Raja Namasivayam, Vigneshwaraprakash, L., Samrat, K. et al. Enhanced Antibacterial Activity of Highly Biocompatible Polymeric Core–Shell Levofloxacin Gold Nanocomposite Formulation Against Pseudomonas aeruginosa. Appl Biochem Biotechnol 195, 1837–1861 (2023). https://doi.org/10.1007/s12010-022-04256-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-04256-1

Keywords

Navigation