Log in

Homologous Expression and Characterization of α-L-rhamnosidase from Aspergillus niger for the Transformation of Flavonoids

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Aspergillus niger has been used for homologous and heterologous expressions of many protein products. In this study, the α-L-rhamnosidase from A. niger (Rha-N1, GenBank XP_001389086.1) was homologously expressed in A. niger 3.350 by Agrobacterium tumefaciens-mediated transformation. The enzyme activity of Rha-N1 was 0.658 U/mL, which was obtained by cultivation of engineered A. niger in a 5-L bioreactor. Rha-N1 was purified by affinity chromatography and characterized. The optimum temperature and optimum pH for Rha-N1 were 60 °C and 4.5, respectively. Enzyme activity was promoted by Al3+, Li+, Mg2+, and Ba2+ and was inhibited by Mn2+, Fe3+, Ca2+, Cu2+, and organic solvents. The result indicated that rutin was the most suitable substrate for Rha-N1 by comparison with the other two flavonoid substrates hesperidin and naringin. The transformed products of isoquercitrin, hesperetin-7-O-glucoside, and prunin were identified by LC–MS and 1H-NMR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Data are available on request.

References

  1. Carceller, J. M., Martínez Galán, J. P., Monti, R., Bassan, J. C., Filice, M., Iborra, S., Yu, J., & Corma, A. (2019). Selective synthesis of citrus flavonoids prunin and naringenin using heterogeneized biocatalyst on graphene oxide. Green Chemistry, 21, 839–849.

    Article  CAS  Google Scholar 

  2. Céliz, G., Rodriguez, J., Soria, F., & Daz, M. (2015). Synthesis of hesperetin 7-O-glucoside from flavonoids extracted from Citrus waste using both free and immobilized α-l-rhamnosidases. Biocatalysis and Agricultural Biotechnology, 4, 335–341.

    Article  Google Scholar 

  3. Eom, S. J., Kim, K. T., & Paik, H. D. (2018). Microbial bioconversion of ginsenosides in Panax ginseng and their improved bioactivities. Food Reviews International, 34, 698–712.

    Article  CAS  Google Scholar 

  4. Resham, K., Khare, P., Bishnoi, M., & Sharma, S. S. (2020). Neuroprotective effects of isoquercitrin in diabetic neuropathy via Wnt/β-catenin signaling pathway inhibition. BioFactors (Oxford), 46, 411–420.

    Article  CAS  Google Scholar 

  5. Biswas, T., Mathur, A. K., & Mathur, A. (2017). A literature update elucidating production of Panax ginsenosides with a special focus on strategies enriching the anti-neoplastic minor ginsenosides in ginseng preparations. Applied Microbiology and Biotechnology, 101, 4009–4032.

    Article  CAS  PubMed  Google Scholar 

  6. Zhao, Y., & Li, C. (2018). Biosynthesis of plant triterpenoid saponins in microbial cell factories. Journal of Agricultural and Food Chemistry, 66, 12155–12165.

    Article  CAS  PubMed  Google Scholar 

  7. Yadav, S., Yadav, R. S. S., & Yadav, K. D. S. (2013). An α-l-rhamnosidase from Aspergillus awamori MTCC-2879 and its role in debittering of orange juice. International Journal of Food Science & Technology, 48, 927–933.

    Article  CAS  Google Scholar 

  8. Zhang, R., Zhang, B. L., Li, G. C., **e, T., Hu, T., & Luo, Z. Y. (2015). Enhancement of ginsenoside Rg(1) in panax ginseng hairy root by overexpressing the alpha-l-rhamnosidase gene from Bifidobacterium breve. Biotechnology Letters, 37, 2091–2096.

    Article  CAS  PubMed  Google Scholar 

  9. Bourbouze, R., Pratviel-Sosa, F., & Percheron, F. (1975). Rhamnodiastase et α-l-rhamnosidase de fagopyrum esculentum. Phytochemistry (Oxford), 14, 1279–1282.

    Article  CAS  Google Scholar 

  10. Suzuki, H. (1962). Hydrolysis of flavonoid glycosides by enzymes (rhamnodiastase) from rhamnus and other sources. Archives of Biochemistry and Biophysics, 99, 476–483.

    Article  CAS  PubMed  Google Scholar 

  11. Thomas, D. W., Smythe, C. V., & Labbee, M. D. (1958). Enzymatic hydrolysis of naringin, the bitter principle of grapefruit. Journal of Food Science, 23, 591–598.

    Article  CAS  Google Scholar 

  12. Hall, D. H. (1938). A new enzyme of the glycosidase type. Nature (London), 142, 150–150.

    Article  Google Scholar 

  13. Antón-Millán, N., García-Tojal, J., Marty-Roda, M., Garroni, S., Cuesta-López, S., & Tamayo-Ramos, J. A. (2018). Influence of three commercial graphene derivatives on the catalytic properties of a Lactobacillus plantarum α-l-rhamnosidase when used as immobilization matrices. ACS Applied Materials & Interfaces, 10, 18170–18182.

    Article  CAS  Google Scholar 

  14. Avila, M., Jaquet, M., Moine, D., Requena, T., Peláez, C., Arigoni, F., & Jankovic, I. (2009). Physiological and biochemical characterization of the two α-l-rhamnosidases of Lactobacillus plantarum NCC245. Microbiology (Society for General Microbiology), 155, 2739–2749.

    CAS  Google Scholar 

  15. De Winter, K., Šimčíková, D., Schalck, B., Weignerová, L., Pelantova, H., Soetaert, W., Desmet, T., & Křen, V. (2013). Chemoenzymatic synthesis of α-l-rhamnosides using recombinant α-l-rhamnosidase from Aspergillus terreus. Bioresource Technology, 147, 640–644.

    Article  PubMed  CAS  Google Scholar 

  16. Manzanares, P., de Graaff, L. H., & Visser, J. (1997). Purification and characterization of an α-l-rhamnosidase from Aspergillus niger. FEMS Microbiology Letters, 157, 279–283.

    Article  CAS  PubMed  Google Scholar 

  17. Yadav, S., Yadav, V., Yadava, S., & Yadav, K. D. S. (2012). Purification and functional characterisation of an α-l-rhamnosidase from Penicillium citrinum MTCC-3565. International Journal of Food Science & Technology, 47, 1404–1410.

    Article  CAS  Google Scholar 

  18. Han, B., & Fu, S. P. (2008). Characterization of glycoside-α-rhamnosidase from Absidia sp. Journal of Dalian Polytechnic University, 27, 105–109.

    CAS  Google Scholar 

  19. Yadav, V., Yadav, P. K., Yadav, S., & Yadav, K. D. S. (2010). α-l-Rhamnosidase: A review. Process Biochemistry, 45, 1226–1235.

    Article  CAS  Google Scholar 

  20. Zverlov, V. V., Hertel, C., Bronnenmeier, K., Hroch, A., Kellermann, J., & Schwarz, W. H. (2000). The thermostable α-l-rhamnosidase RamA of Clostridium stercorarium: Biochemical characterization and primary structure of a bacterial α-l-rhamnoside hydrolase, a new type of inverting glycoside hydrolase. Molecular Microbiology, 35, 173–179.

    Article  CAS  PubMed  Google Scholar 

  21. Wang, D. Q., Zheng, P., & Chen, P. C. (2019). Production of a recombinant α-l-rhamnosidase from Aspergillus niger CCTCC M 2018240 in Pichia pastoris. Applied Biochemistry and Biotechnology, 189, 1020–1037.

    Article  CAS  PubMed  Google Scholar 

  22. Fleißner, A., & Dersch, P. (2010). Expression and export: Recombinant protein production systems for Aspergillus. Applied Microbiology and Biotechnology, 87, 1255–1270.

    Article  PubMed  CAS  Google Scholar 

  23. Meyer, V., Wu, B., & Ram, A. F. J. (2010). Aspergillus as a multi-purpose cell factory: Current status and perspectives. Biotechnology Letters, 33, 469–476.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Punt, P. J., van Biezen, N., Conesa, A., Albers, A., Mangnus, J., & van den Hondel, C. (2002). Filamentous fungi as cell factories for heterologous protein production. Trends In Biotechnology, 20, 200–206.

    Article  CAS  PubMed  Google Scholar 

  25. Ward, O. P. (2012). Production of recombinant proteins by Filamentous fungi: Production of recombinant proteins. Biotechnology Advances, 30, 1119–1139.

    Article  CAS  PubMed  Google Scholar 

  26. Pel, H. J., Winded, J. H., Archer, D. B., Dyer, P. S., & Hofmann, G. (2007). Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 513.88. Nature Biotechnology, 25, 221–231.

    Article  PubMed  Google Scholar 

  27. Poturcu, K., Ozmen, I., & Biyik, H. H. (2016). Characterization of an alkaline thermostable pectin lyase from newly isolated Aspergillus niger WHAK1 and its application on fruit juice clarification. Arabian Journal for Science and Engineering, 42, 19–29.

    Article  CAS  Google Scholar 

  28. Cai, L. N., Xu, S. N., Lu, T., Lin, D. Q., & Yao, S. J. (2019). Directed expression of halophilic and acidophilic β-glucosidases by introducing homologous constitutive expression cassettes in marine Aspergillus niger. Journal of Biotechnology, 292, 12–22.

    Article  CAS  PubMed  Google Scholar 

  29. Han, G., Shao, Q., Li, C., Zhao, K., Jiang, L., Fan, J., Jiang, H., & Tao, F. (2018). An efficient Agrobacterium-mediated transformation method for aflatoxin generation fungus Aspergillus flavus. The Journal of Microbiology, 56, 356–364.

    Article  PubMed  CAS  Google Scholar 

  30. Michielse, C. B., Hooykaas, P. J., Hondelvd, C. A., & Ram, A. F. (2005). Agrobacterium-mediated transformation as a tool for functional genomics in fungi. Current Genetics, 48, 1–17.

    Article  CAS  PubMed  Google Scholar 

  31. Michielse, C. B., Hooykaas, P. J. J., van den Hondel, C. A. M. J. J., & Ram, A. F. J. (2008). Agrobacterium-mediated transformation of the filamentous fungus Aspergillus awamori. Nature Protocols, 3, 1671–1678.

    Article  PubMed  Google Scholar 

  32. Sun, Y., Niu, Y., He, B., Ma, L., Li, G., Tran, V. T., Zeng, B., & Hu, Z. (2019). A dual selection marker transformation system using Agrobacterium tumefaciens for the industrial Aspergillus oryzae 3.042. Journal of Microbiology and Biotechnology, 29, 230–234.

    Article  PubMed  Google Scholar 

  33. Yadav, V., Yadav, S., Yadava, S., & Yadav, K. D. S. (2012). α-L-rhamnosidase from Aspergillusclavato-nanicus MTCC-9611 active at alkaline pH. Applied Biochemistry and Microbiol, 48, 295–301.

    Article  CAS  Google Scholar 

  34. Yadav, S., Yadava, S., & Yadav, K. D. S. (2013). Purification and characterization of α-L-rhamnosidase from Penicillium corylopholum MTCC-2011. Process Biochemistry, 48(9), 1348–1354.

    Article  CAS  Google Scholar 

  35. Kumar, D., Yadav, S., Yadava, S., & Yadav, K. D. S. (2019). An alkali tolerant α-l-rhamnosidase from Fusarium moniliforme MTCC-2088 used in de-rhamnosylation of natural glycosides. Bioorganic Chemistry, 84, 24–31.

    Article  CAS  PubMed  Google Scholar 

  36. Kristína, M., Lenka, W., Michal, R., Vladimír, K. & Martin, R. (2015). Upscale of recombinant α-L-rhamnosidase production by Pichia pastoris MutS strain. Frontiers in Microbiology, 6.

  37. Ge, L., & **e, J. (2017). Purification and characterisation of a novel α-L-rhamnosidase exhibiting transglycosylating activity from Aspergillus oryzae. International Journal of Food Science & Technology, 52(12), 2596–2603.

    Article  CAS  Google Scholar 

  38. Yadav, S., & Yadava, S. (2017). α-L-Rhamnosidase selective for rutin to isoquercitrin transformation from Penicillium griseoroseum MTCC-9224. Bioorganic Chemistry, 70, 222–228.

    Article  CAS  PubMed  Google Scholar 

  39. Zhang, T., & Yuan, W. (2018). Purification and characterization of an intracellular α-L-rhamnosidase from a newly isolated strain, Alternaria alternata SK37. 001. Food Chemistry, 269, 63–69.

    Article  CAS  PubMed  Google Scholar 

  40. Tian, J., Wang, P., Huang, L., Chu, X., Wu, N., & Fan, Y. (2013). Improving the thermostability of methyl parathion hydrolase from Ochrobactrum sp. M231 using a computationally aided method. Applied Microbiology and Biotechnology, 97, 2997–3006.

    Article  CAS  PubMed  Google Scholar 

  41. Li, L., Gong, J., Wang, S., Li, G., Gao, T., Jiang, Z., Cheng, Y. S., Ni, H., & Li, Q. (2019). Heterologous expression and characterization of a new clade of Aspergillus α-L-rhamnosidase suitable for citrus juice processing. Journal of Agricultural and Food Chemistry, 67, 2926–2935.

    Article  CAS  PubMed  Google Scholar 

  42. de Lise, F., Mensitieri, F., & Tarallo, V. (2016). RHA-P: Isolation, expression and characterization of a bacterial a-l-rhamnosidase from Novosphingobium sp. PP1Y. Journal of Molecular Catalysis B: Enzymatic, 134, 136–147.

    Article  CAS  Google Scholar 

Download references

Funding

This research was financially supported by the National Natural Science Foundation of China (31600639), Science and Technology Project Founded by the Education Department of Jiangxi Province (GJJ202305), and Zhejiang University Student Science and Technology Innovation Activity Plan (**nMiao Talent Plan, 2021R403094).

Author information

Authors and Affiliations

Authors

Contributions

Jianyong Zheng and **aojun Li contributed to conceptualization; Hangyu Ye and **aojun Li performed data curation; Jianyong Zheng, **aojun Li, and Hangyu Ye contributed to funding acquisition; Hangyu Ye, Luyuan Li, and Yinjun Zhang performed investigation; Jianyong Zheng and **aojun Li were involved in supervision; Hangyu Ye and **aojun Li performed writing original draft.

Corresponding author

Correspondence to Jianyong Zheng.

Ethics declarations

Ethical Approval

Not applicable.

Consent to Participate

The final manuscript has been seen and approved by all the authors.

Consent to Publish

All the authors mutually agreed that the work should be published in Applied Biochemistry and Biotechnology.

Competing Interests

The authors declare no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 306 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, H., Li, X., Li, L. et al. Homologous Expression and Characterization of α-L-rhamnosidase from Aspergillus niger for the Transformation of Flavonoids. Appl Biochem Biotechnol 194, 3453–3467 (2022). https://doi.org/10.1007/s12010-022-03894-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-03894-9

Keywords

Navigation