Log in

One-Pot Biosynthesis of 3-Aminopropionic Acid from Fumaric Acid Using Recombinant Bacillus megaterium Containing a Linear Dual-Enzyme Cascade

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

3-Aminopropionic acid (3-APA) has wide applications in food, cosmetics, pharmaceuticals, chemical, and polymer industries. This present study aimed to develop an eco-friendly whole-cell biocatalytic process for the bio-production of 3-APA from fumaric acid (FA) using Bacillus megaterium. A dual-enzyme cascade route with aspartate-1-decarboxylases (ADC) from Bacillus subtilis and native aspartate ammonia-lyase (AspA) was developed. Divergent catalytic efficiencies between these two enzymes led to an imbalance between both enzyme reactions. In order to coordinate AspA and ADC expression levels, gene mining, optimization, and duplication strategies were employed. Additionally, culture cultivation conditions and biocatalysis process parameters were optimized. A maximum 3-APA titer was obtained (11.68 ± 0.26 g/L) with a yield of 0.78 g/g under the following optimal conditions: 45 °C, pH 6.0, and 15 g/L FA. This study established a biocatalysis process for the production of 3-APA from FA using the whole cells of the recombinant B. megaterium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

References

  1. Srinivasamurthy, V. S., Böttcher, D., & Bornscheuer, U. T. (2019). A multi-enzyme cascade reaction for the production of 6-hydroxyhexanoic acid. Zeitschrift für Naturforschung C, 74, 71–76.

    Article  CAS  Google Scholar 

  2. Hold, C., Billerbeck, S., & Panke, S. (2016). Forward design of a complex enzyme cascade reaction. Nature Communications, 7, 1–8.

    Article  Google Scholar 

  3. Sperl, J. M., & Sieber, V. (2018). (2018) Multienzyme cascade reactions -Status and recent advances. ACS Catalysis, 8, 2385–2396.

    Article  CAS  Google Scholar 

  4. Liu, J., Tian, K., & Li, Z. (2020). in Biomass. In A. Pandey, S. V. Mohan, J.-S. Chang, P. Hallenbeck, & C. Larroche (Eds.), Biofuels, Biochemicals (pp. 427–447). Elsevier.

    Chapter  Google Scholar 

  5. Peters, C., & Buller, R. (2019). Linear enzyme cascade for the production of (–)-iso-isopulegol. Zeitschrift für Naturforschung C, 74, 63–70.

    Article  CAS  Google Scholar 

  6. Abidin, M. Z., Saravanan, T., Zhang, J., Tepper, P. G., Strauss, E., & Poelarends, G. J. (2018). Modular enzymatic cascade synthesis of vitamin B5 and its derivatives. Chemistry (Weinheim an der Bergstrasse, Germany), 24, 17434.

    CAS  Google Scholar 

  7. Qian, Y., Liu, J., Song, W., Chen, X., Luo, Q., & Liu, L. (2018). Production of β-alanine from fumaric acid using a dual-enzyme cascade. ChemCatChem, 10, 4984–4991.

    Article  Google Scholar 

  8. Enoki, J., Meisborn, J., Müller, A.-C., & Kourist, R. (2016). A multi-enzymatic cascade reaction for the stereoselective production of γ-oxyfunctionalyzed amino acids. Frontiers in Microbiology, 7, 425.

    Article  Google Scholar 

  9. Könst, P. M., Franssen, M. C., Scott, E. L., & Sanders, J. P. (2009). A study on the applicability of L-aspartate α-decarboxylase in the biobased production of nitrogen containing chemicals. Green Chemistry, 11, 1646–1652.

    Article  Google Scholar 

  10. Song, C. W., Lee, J., Ko, Y.-S., & Lee, S. Y. (2015). Metabolic engineering of Escherichia coli for the production of 3-aminopropionic acid. Metabolic Engineering, 30, 121–129.

    Article  CAS  Google Scholar 

  11. Shen, Y., Zhao, L., Li, Y., Zhang, L., & Shi, G. (2014). Synthesis of β-alanine from L-aspartate using L-aspartate-α-decarboxylase from Corynebacterium glutamicum. Biotechnology Letters, 36, 1681–1686.

    Article  CAS  Google Scholar 

  12. Pei, W., Zhang, J., Deng, S., Tigu, F., Li, Y., Li, Q., Cai, Z., & Li, Y. (2017). Molecular engineering of L-aspartate-α-decarboxylase for improved activity and catalytic stability. Applied Microbiology and Biotechnology, 101, 6015–6021.

    Article  CAS  Google Scholar 

  13. Zou, X., Guo, L., Huang, L., Li, M., Zhang, S., Yang, A., Zhang, Y., Zhu, L., Zhang, H., & Zhang, J. (2020). Pathway construction and metabolic engineering for fermentative production of β-alanine in Escherichia coli. Applied Microbiology and Biotechnology, 104, 2545–2559.

    Article  CAS  Google Scholar 

  14. Zhang, T., Zhang, R., Xu, M., Zhang, X., Yang, T., Liu, F., Yang, S., & Rao, Z. (2018). Glu56Ser mutation improves the enzymatic activity and catalytic stability of Bacillus subtilis L-aspartate α-decarboxylase for an efficient β-alanine production. Process Biochemistry, 70, 117–123.

    Article  CAS  Google Scholar 

  15. Li, H., Lu, X., Chen, K., Yang, J., Zhang, A., Wang, X., & Ouyang, P. (2018). β-Alanine production using whole-cell biocatalysts in recombinant Escherichia coli. Molecular Catalysis, 449, 93–98.

    Article  CAS  Google Scholar 

  16. Qian, Y., Lu, C., Liu, J., Song, W., Chen, X., Luo, Q., Liu, L., & Wu, J. (2020). Engineering protonation conformation of l-aspartate-α-decarboxylase to relieve mechanism-based inactivation. Biotechnology and Bioengineering, 117, 1607–1614.

    Article  CAS  Google Scholar 

  17. Bunk, B., Schulz, A., Stammen, S., Münch, R., Warren, M. J., Jahn, D., & Biedendieck, R. (2010). A short story about a big magic bug. Bioengineered Bugs, 1, 85–91.

    Article  Google Scholar 

  18. Biedendieck, R. (2016) A Bacillus megaterium system for the production of recombinant proteins and protein complexes. Advanced Technologies for Protein Complex Production and Characterization, 97–113.

  19. Nehru, G., Tadi, S. R. R., Limaye, A. M., & Sivaprakasam, S. (2020). Production and characterization of low molecular weight heparosan in Bacillus megaterium using Escherichia coli K5 glycosyltransferases. International Journal of Biological Macromolecules, 160, 69–76.

    Article  CAS  Google Scholar 

  20. Abdulmughni, A., Erichsen, B., Hensel, J., Hannemann, F., & Bernhardt, R. (2020). Improvement of the 25-hydroxyvitamin D3 production in a CYP109A2-expressing Bacillus megaterium system. Journal of Biotechnology, 325, 355–359.

    Article  Google Scholar 

  21. Israni, N., Venkatachalam, P., Gajaraj, B., Varalakshmi, K. N., & Shivakumar, S. (2020). Whey valorization for sustainable polyhydroxyalkanoate production by Bacillus megaterium: Production, characterization and in vitro biocompatibility evaluation. Journal of Environmental Management, 255, 109884.

    Article  CAS  Google Scholar 

  22. Kiss, F. M., Lundemo, M. T., Zapp, J., Woodley, J. M., & Bernhardt, R. (2015). Process development for the production of 15 β-hydroxycyproterone acetate using Bacillus megaterium expressing CYP106A2 as whole-cell biocatalyst. Microbial Cell Factories, 14, 1–13.

    Article  CAS  Google Scholar 

  23. Ghosh, S., Pawar, H., Pai, O., & Banerjee, U. C. (2014). Microbial transformation of quinic acid to shikimic acid by Bacillus megaterium. Bioresources and Bioprocessing, 1, 1–6.

    Article  CAS  Google Scholar 

  24. Gibson, D. G., Young, L., Chuang, R.-Y., Venter, J. C., Hutchison, C. A., & Smith, H. O. (2009). Enzymatic assembly of DNA molecules up to several hundred kilobases. Nature Methods, 6, 343–345.

    Article  CAS  Google Scholar 

  25. Tadi, S. R. R., Nehru, G., & Sivaprakasam, S. (2021). Combinatorial approach for improved production of whole-cell 3-aminopropionic acid in recombinant Bacillus megaterium: codon optimization, gene duplication and process optimization. 3 Biotech, 11, 1–11.

    Article  Google Scholar 

  26. Lee, H.-N., Shin, W.-S., Seo, S.-Y., Choi, S.-S., Song, J.-S., Kim, J.-Y., Park, J.-H., Lee, D., Kim, S. Y., & Lee, S. J. (2018). Corynebacterium cell factory design and culture process optimization for muconic acid biosynthesis. Scientific Reports, 8, 1–12.

    Google Scholar 

  27. Wang, J.-R., Li, Y.-Y., Liu, D.-N., Liu, J.-S., Li, P., Chen, L.-Z. and Xu, S.-D. (2015) Codon optimization significantly improves the expression level of α-amylase gene from Bacillus licheniformis in Pichia pastoris. BioMed Research International, 2015.

  28. König, L., Hartz, P., Bernhardt, R., & Hannemann, F. (2019). High-yield C11-oxidation of hydrocortisone by establishment of an efficient whole-cell system in Bacillus megaterium. Metabolic Engineering, 55, 59–67.

    Article  Google Scholar 

  29. Elena, C., Ravasi, P., Castelli, M. E., Peirú, S., & Menzella, H. G. (2014). Expression of codon optimized genes in microbial systems: Current industrial applications and perspectives. Frontiers in Microbiology, 5, 21.

    Article  Google Scholar 

  30. Sha, C., Yu, X.-W., Li, F., & Xu, Y. (2013). Impact of gene dosage on the production of lipase from Rhizopus chinensis CCTCC M201021 in Pichia pastoris. Applied Biochemistry and Biotechnology, 169, 1160–1172.

    Article  CAS  Google Scholar 

  31. Yang, J., Lu, Z., Chen, J., Chu, P., Cheng, Q., Liu, J., Ming, F., Huang, C., **ao, A., & Cai, H. (2016). Effect of cooperation of chaperones and gene dosage on the expression of porcine PGLYRP-1 in Pichia pastoris. Applied Microbiology and Biotechnology, 100, 5453–5465.

    Article  CAS  Google Scholar 

  32. Liu, Z., Zheng, W., Ye, W., Wang, C., Gao, Y., Cui, W., & Zhou, Z. (2019). Characterization of cysteine sulfinic acid decarboxylase from Tribolium castaneum and its application in the production of β-alanine. Applied Microbiology and Biotechnology, 103, 9443–9453.

    Article  CAS  Google Scholar 

  33. Biedendieck, R., Gamer, M., Jaensch, L., Meyer, S., Rohde, M., Deckwer, W.-D., & Jahn, D. (2007). A sucrose-inducible promoter system for the intra-and extracellular protein production in Bacillus megaterium. Journal of Biotechnology, 132, 426–430.

    Article  CAS  Google Scholar 

  34. Wang, L., Piao, X., Cui, S., Hu, M., & Tao, Y. (2020). Enhanced production of β-alanine through co-expressing two different subtypes of l-aspartate-α-decarboxylase. Journal of Industrial Microbiology and Biotechnology, 47, 465–474.

    Article  CAS  Google Scholar 

  35. Stammen, S., Müller, B. K., Korneli, C., Biedendieck, R., Gamer, M., Franco-Lara, E., & Jahn, D. (2010). High-yield intra-and extracellular protein production using Bacillus megaterium. Applied and Environmental Microbiology, 76, 4037–4046.

    Article  CAS  Google Scholar 

  36. Yu, X.-J., Huang, C.-Y., Xu, X.-D., Chen, H., Liang, M.-J., Xu, Z.-X., Xu, H.-X., & Wang, Z. (2020). Protein engineering of a pyridoxal-5′-phosphate-dependent l-aspartate-α-decarboxylase from Tribolium castaneum for β-alanine production. Molecules, 25, 1280.

    Article  CAS  Google Scholar 

  37. Phan, A., Ngo, T., & Lenhoff, H. (1982). Spectrophotometric assay for lysine decarbox ylase. Analytical Biochemistry, 120, 193–197.

    Article  CAS  Google Scholar 

  38. Lee, S.-G., Hong, S.-P., & Sung, M.-H. (1999). Development of an enzymatic system for the production of dopamine from catechol, pyruvate, and ammonia. Enzyme and Microbial Technology, 25, 298–302.

    Article  CAS  Google Scholar 

  39. Ueno, S., Katayama, T., Watanabe, T., Nakajima, K., Hayashi, M., Shigematsu, T., & Fujii, T. (2013). Enzymatic production of γ-aminobutyric acid in soybeans using high hydrostatic pressure and precursor feeding. Bioscience, Biotechnology, and Biochemistry, 77, 706–713.

    Article  CAS  Google Scholar 

  40. Xu, J., Zhu, Y., & Zhou, Z. (2021). Systematic engineering of the rate-limiting step of β-alanine biosynthesis in Escherichia coli. Electronic Journal of Biotechnology, 51, 88–94.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Ministry of Human Resource and Development, New Delhi, India, for fellowship. The authors are grateful to the Department of Biosciences and Bioengineering, IIT Guwahati, for providing a platform to conduct research activities.

Funding

This study was financially supported by the Department of Biotechnology, Govt. of India (Grant No—BT/PR15946/NER/95/485/2016).

Author information

Authors and Affiliations

Authors

Contributions

Subbi Rami Reddy Tadi: conceptualization, methodology, investigation, writing—original draft of the manuscript, review and editing.

Ganesh Nehru: methodology and investigation support, review and editing.

Senthilkumar Sivaprakasam: project administration, supervision, writing—review and editing.

Corresponding author

Correspondence to Senthilkumar Sivaprakasam.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent to Publish

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 62 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tadi, S.R.R., Nehru, G. & Sivaprakasam, S. One-Pot Biosynthesis of 3-Aminopropionic Acid from Fumaric Acid Using Recombinant Bacillus megaterium Containing a Linear Dual-Enzyme Cascade. Appl Biochem Biotechnol 194, 1740–1754 (2022). https://doi.org/10.1007/s12010-021-03783-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-021-03783-7

Keywords

Navigation