Log in

Increased Production of Dicinnamoylmethane Via Improving Cellular Malonyl-CoA Level by Using a CRISPRi in Escherichia coli

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Curcuminoids are natural phenylpropanoids that are biosynthesized via an L-phenylalanine metabolism pathway in turmeric (Curcuma longa L.). Curcuminoids have various chemopreventive activities and pharmaceutical applications in human life. In this study, we synthesized dicinnamoylmethane, one principal component of curcuminoids, from cinnamic acid by means of co-expression of Oryza sativa curcuminoid synthase and Petroselinum crispum 4-coumarate-CoA ligase in Escherichia coli BL21 (DE3). Moreover, we used CRISPRi systems to knock down the genes in a tricarboxylic acid cycle and fatty acid biosynthesis pathway. The repression of target genes led to an increase of up to 0.236 μmol g−1 DCW of malonyl-CoA in cytosol-engineered E. coli and subsequently increased the biosynthesis of dicinnamoylmethane. We found that the S10 strain containing a CRISPRi repression for three genes, fabF, fabD, and mdh, showed the highest amount of dicinnamoylmethane of 7.54 μM, which is 5.76-fold higher than that of the wild-type strain. Finally, 41.94 μM (~ 11.6 mg) of dicinnamoylmethane was obtained in a 3-L fermenter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Goel, A., Kunnumakkara, A. B., & Aggarwal, B. B. (2008). Curcumin as “curecumin”: from kitchen to clinic. Biochemical Pharmacology, 75(4), 787–809.

    CAS  PubMed  Google Scholar 

  2. Anand, P., Kunnumakkara, A. B., Newman, R. A., & Aggarwal, B. B. (2007). Bioavailability of curcumin: problems and promises. Molecular Pharmaceutics, 4(6), 807–818.

    CAS  PubMed  Google Scholar 

  3. Kita, T., Imai, S., Sawada, H., Kumagai, H., & Seto, H. (2008). The biosynthetic pathway of curcuminoid in turmeric (Curcuma longa) as revealed by 13C-labeled precursors. Bioscience, Biotechnology, and Biochemistry, 72(7), 1789–1798.

    CAS  PubMed  Google Scholar 

  4. Aggarwal, B. B., Kumar, A., & Bharti, A. C. (2003). Anticancer potential of curcumin: preclinical and clinical studies. Anticancer Research, 23(1A), 363–398.

    CAS  PubMed  Google Scholar 

  5. Al-Reza, S. M., Rahman, A., Sattar, M. A., Rahman, M. O., & Fida, H. M. (2010). Essential oil composition and antioxidant activities of Curcuma aromatica Salisb. Food and Chemical Toxicology, 48(6), 1757–1760.

    CAS  PubMed  Google Scholar 

  6. Wilson, B., Abraham, G., Manju, V. S., Mathew, M., Vimala, B., Sundaresan, S., & Nambisan, B. (2005). Antimicrobial activity of Curcuma zedoaria and Curcuma malabarica tubers. Journal of Ethnopharmacology, 99(1), 147–151.

    CAS  PubMed  Google Scholar 

  7. Dao, T. T., Nguyen, P. H., Won, H. K., Kim, E. H., Park, J. S., Won, B. Y., & Oh, W. K. Curcuminoids from Curcuma longa and their inhibitory activities on influenza. A neuraminidase. Food Chemistry, 134(1), 21–28.

  8. Hatcher, H., Planalp, R., Cho, J., Torti, F. M., & Torti, S. V. (2008). Curcumin: from ancient medicine to current clinical trials. Cellular and Molecular Life Sciences, 65(11), 1631–1652.

    CAS  PubMed  Google Scholar 

  9. Prasad, S., Gupta, S. C., Tyagi, A. K., & Aggarwal, B. B. (2014). Curcumin, a component of golden spice: from bedside to bench and back. Biotechnology Advances, 32(6), 1053–1064.

    CAS  PubMed  Google Scholar 

  10. Garcia-Alloza, M., Borrelli, L., Rozkalne, A., Hyman, B., & Bacskai, B. (2007). Curcumin labels amyloid pathology in vivo, disrupts existing plaques, and partially restores distorted neuritis in an Alzheimer mouse model. Journal of Neurochemistry, 102(4), 1095–1104.

    CAS  PubMed  Google Scholar 

  11. Pan, J., Li, H., Ma, J. F., Tan, Y. Y., **ao, Q., Ding, J. Q., & Chen, S. D. (2012). Curcumin inhibition of JNKs prevents dopaminergic neuronal loss in a mouse model of Parkinson’s disease through suppressing mitochondria dysfunction. Translational Neurodegeneration, 1, 1–9.

    Google Scholar 

  12. Katsuyama, Y., Kita, T., Funa, N., & Horinouchi, S. (2009). Curcuminoid biosynthesis by two type III polyketide synthases in the herb Curcuma longa. Journal of Biological Chemistry, 284(17), 11160–11170.

    CAS  PubMed  Google Scholar 

  13. Katsuyama, Y., Matsuzawa, M., Funa, N., & Horinouchi, S. (2008). Production of curcuminoids by Escherichia coli carrying an artificial biosynthesis pathway. Microbiology, 154(Pt 9), 2620–2628.

    CAS  PubMed  Google Scholar 

  14. Katsuyama, Y., Hirose, Y., Funa, N., Ohnishi, Y., & Horinouchi, S. (2010). Precursor-directed biosynthesis of curcumin analogs in Escherichia coli. Bioscience, Biotechnology, and Biochemistry, 74(3), 641–645.

    CAS  PubMed  Google Scholar 

  15. Wang, S., Zhang, S., Zhou, T., Zeng, J., & Zhan, J. (2013). Design and application of an in vivo reporter assay for phenylalanine ammonia-lyase. Applied Microbiology and Biotechnology, 97(17), 7877–7885.

    CAS  PubMed  Google Scholar 

  16. Rodrigues, J. L., Araujo, R. G., Prather, K. L., Kluskens, L. D., & Rodrigues, L. R. (2015). Production of curcuminoids from tyrosine by a metabolically engineered Escherichia coli using caffeic acid as an intermediate. Biotechnology Journal, 10(4), 599–609.

    CAS  PubMed  Google Scholar 

  17. Kim, E. J., Cha, M. N., Kim, B. G., & Ahn, J. H. (2017). Production of curcuminoids in engineered Escherichia coli. Journal of Microbiology and Biotechnology, 27(5), 975–982.

    CAS  PubMed  Google Scholar 

  18. Fang, Z., Jones, J. A., Zhou, J., & Koffas, M. A. G. (2018). Engineering Escherichia coli co-cultures for production of curcuminoids from glucose. Biotechnology Journal, 13(5), e1700576.

    PubMed  Google Scholar 

  19. Leonard, E., Lim, K. H., Saw, P. N., & Koffas, M. A. (2007). Engineering central metabolic pathways for high-level flavonoid production in Escherichia coli. Applied and Environmental Microbiology, 73(12), 3877–3886.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Gago, G., Diacovich, L., Arabolaza, A., Tsai, S. C., & Gramajo, H. (2011). Fatty acid biosynthesis in actinomycetes. FEMS Microbiology Reviews, 35(3), 475–497.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Zha, W., Rubin-Pitel, S. B., Shao, Z., & Zhao, H. (2009). Improving cellular malonyl-CoA level in Escherichia coli via metabolic engineering. Metabolic Engineering, 11(3), 192–198.

    CAS  PubMed  Google Scholar 

  22. Wu, J., Du, G., Zhou, J., & Chen, J. (2013). Metabolic engineering of Escherichia coli for (2S)-pinocembrin production from glucose by a modular metabolic strategy. Metabolic Engineering, 16, 48–55.

    PubMed  Google Scholar 

  23. van Summeren-Wesenhagen, P. V., & Marienhagen, J. (2015). Metabolic engineering of Escherichia coli for the synthesis of the plant polyphenol pinosylvin. Applied and Environmental Microbiology, 81(3), 840–849.

    PubMed  PubMed Central  Google Scholar 

  24. Yang, Y., Lin, Y., Li, L., Linhardt, R. J., & Yan, Y. (2015). Regulating malonyl-CoA metabolism via synthetic RNAs for enhanced biosynthesis of natural products. Metabolic Engineering, 29, 217–226.

    CAS  PubMed  Google Scholar 

  25. Boettcher, M., & McManus, M. T. (2015). Choosing the right tool for the job: RNAi, TALEN, or CRISPR. Molecular Cell, 58(4), 575–585.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Wu, J., Du, G., Chen, J., & Zhou, J. (2015). Enhancing flavonoid production by systematically tuning the central metabolic pathways based on a CRISPR interference system in Escherichia coli. Scientific Reports, 5, 13477.

    PubMed  PubMed Central  Google Scholar 

  27. Bikard, D., Jiang, W., Samai, P., Hochschild, A., Zhang, F., & Marraffini, L. A. (2013). Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system. Nucleic Acids Research, 41(15), 7429–7437.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Adli, M. (2018). The CRISPR tool kit for genome editing and beyond. Nature Communications, 9(1), 1911.

    PubMed  PubMed Central  Google Scholar 

  29. Li, Y., Lin, Z., Huang, C., Zhang, Y., Wang, Z., Tang, Y. J., Chen, T., & Zhao, X. (2015). Metabolic engineering of Escherichia coli using CRISPR-Cas9 meditated genome editing. Metabolic Engineering, 31, 13–21.

    PubMed  Google Scholar 

  30. Jakociunas, T., Bonde, I., Herrgard, M., Harrison, S. J., Kristensen, M., Pedersen, L. E., Jensen, M. K., & Keasling, J. D. (2015). Multiplex metabolic pathway engineering using CRISPR/Cas9 in Saccharomyces cerevisiae. Metabolic Engineering, 28, 213–222.

    CAS  PubMed  Google Scholar 

  31. Chu, L. L., Dhakal, D., Shin, H. J., Jung, H. J., Yamaguchi, T., & Sohng, J. K. (2018). Metabolic engineering of Escherichia coli for enhanced production of naringenin 7-sulfate and its biological activities. Frontiers in Microbiology, 9, 1671.

    PubMed  PubMed Central  Google Scholar 

  32. Tian, T., Kang, J. W., Kang, A., & Lee, T. S. (2019). Redirecting metabolic flux via combinatorial multiplex CRISPRi-mediated repression for isopentenol production in Escherichia coli. ACS Synthetic Biology, 8(2), 391–402.

    CAS  PubMed  Google Scholar 

  33. Lim, C. G., Fowler, Z. L., Hueller, T., Schaffer, S., & Koffas, M. A. (2011). High-yield resveratrol production in engineered Escherichia coli. Applied and Environmental Microbiology, 77(10), 3451–3460.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Malla, S., Koffas, M. A., Kazlauskas, R. J., & Kim, B. G. (2012). Production of 7-O-methyl aromadendrin, a medicinally valuable flavonoid, in Escherichia coli. Applied and Environmental Microbiology, 78(3), 684–694.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Cress, B. F., Toparlak, O. D., Guleria, S., Lebovich, M., Stieglitz, J. T., Englaender, J. A., Jones, J. A., Linhardt, R. J., & Koffas, M. A. (2015). CRISPathBrick: modular combinatorial assembly of type II-A CRISPR arrays for dCas9-mediated multiplex transcriptional repression in E. coli. ACS Synthetic Biology, 4(9), 987–1000.

    CAS  PubMed  Google Scholar 

  36. Cress, B.F., Leitz, Q.D., Kim, D.C., Amore, T.D., Suzuki, J.Y., Linhardt, R.J., Koffas, M.A. (2017). CRISPRi-mediated metabolic engineering of E. coli for O-methylated anthocyanin production. Microbial Cell Factories, 16(1), 10.

  37. Dagert, M., & Ehrlich, S. D. (1979). Prolonged incubation in calcium chloride improves the competence of Escherichia coli cells. Gene, 6(1), 23–28.

    CAS  PubMed  Google Scholar 

  38. Park, J. W., Jung, W. S., Park, S. R., Park, B. C., & Yoon, Y. J. (2007). Analysis of intracellular short organic acid-coenzyme A ester from actinomycetes using liquid chromatography-electrospray ionization-mass spectrometry. Journal of Mass Spectrometry, 42(9), 1136–1147.

    CAS  PubMed  Google Scholar 

  39. Dhakal, D., Chaudhary, A. K., Yi, J. S., Pokhrel, A. R., Shrestha, B., Parajuli, P., Shrestha, A., Yamaguchi, T., Jung, H. J., Kim, S. Y., Kim, B. G., & Sohng, J. K. (2016). Enhanced production of nargenicin A1 and creation of a novel derivative using a synthetic biology platform. Applied Microbiology and Biotechnology, 100(23), 9917–9931.

    CAS  PubMed  Google Scholar 

  40. Chu, L. L., Pandey, R. P., Jung, N., Jung, H. J., Kim, E. H., & Sohng, J. K. (2016). Hydroxylation of diverse flavonoids by CYP450 BM3 variants: biosynthesis of eriodictyol from naringenin in whole cells and its biological activities. Microbial Cell Factories, 15(1), 135.

    PubMed  PubMed Central  Google Scholar 

  41. Chu, L. L., Pandey, R. P., Lim, H. N., Jung, H. J., Thuan, N. H., Kim, T. S., & Sohng, J. K. (2017). Synthesis of umbelliferone derivatives in Escherichia coli and their biological activities. Journal of Biological Engineering, 11, 15.

    PubMed  PubMed Central  Google Scholar 

  42. Kim, M. K., Jeong, W., Kang, J., & Chong, Y. (2011). Significant enhancement in radical-scavenging activity of curcuminoids conferred by acetoxy substituent at the central methylene carbon. Bioorganic & Medicinal Chemistry, 19(12), 3793–3800.

    CAS  Google Scholar 

  43. Davis, M. S., Solbiati, J., & Cronan Jr., J. E. (2000). Overproduction of acetyl-CoA carboxylase activity increases the rate of fatty acid biosynthesis in Escherichia coli. The Journal of Biological Chemistry, 275(37), 28593–28598.

    CAS  PubMed  Google Scholar 

  44. Handke, P., Lynch, S. A., & Gill, R. T. (2011). Application and engineering of fatty acid biosynthesis in Escherichia coli for advanced fuels and chemicals. Metabolic Engineering, 13(1), 28–37.

    CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by a grant from the Next-Generation BioGreen 21 Program (SSAC, grant no.: PJ013137), Rural Development Administration, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae Kyung Sohng.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOCX 271 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chu, L.L., Pandey, R.P., Dhakal, D. et al. Increased Production of Dicinnamoylmethane Via Improving Cellular Malonyl-CoA Level by Using a CRISPRi in Escherichia coli. Appl Biochem Biotechnol 190, 325–340 (2020). https://doi.org/10.1007/s12010-019-03206-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-019-03206-8

Keywords

Navigation