Log in

Utilization of Starch-Enriched Brewery (Rice Wine) Waste for Mixotrophic Cultivation of Ettlia Sp. YC001 Used in Biodiesel Production

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Starch-enriched brewery waste (SBW), an unexplored feedstock, was investigated as a nutritious low-cost source for the mixotrophic cultivation of Ettlia sp. YC001 for biodiesel production. Stirring, autoclaving, and sonication were assessed for the SBW, in conjunction with pH. Stirring at 55 °C was found to be the best, in terms of the effectiveness of starch hydrolysis and yeast disintegration as well as cost. The treated solutions were found to support the mixotrophic growth of microalgae: 20 g/L of glucose medium resulted in the highest biomass production of 9.26 g/L and one with 10 g/L of glucose showed the best lipid productivity of 244.2 mg/L/day. The unsaturated fatty acids increased in the resulting lipid and thus quality well suited for the transportation fuel. All these suggested that SBW, when treated properly, could indeed serve as a cheap feedstock for microalgae-based biodiesel production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Alexandre, H., & Guilloux-benatier, M. (2006). Yeast autolysis in sparkling wine—a review. Australian Journal of Grape and Wine Research, 12, 119–127.

    Article  CAS  Google Scholar 

  2. Babayan, T. L., Bezrukov, M. G., Latov, K. V., Belikov, V. M., Belatseva, E., & Titova, E. F. (1981). Induced autolysis of Saccharomyces cerevisiae: morphological effects, rheological effects and dynamics of accumulation of extracellular hydrolysis products. Current Microbiology, 5, 163–168.

    Article  CAS  Google Scholar 

  3. Cheirsilp, B., & Torpee, S. (2012). Enhanced growth and lipid production of microalgae under mixotrophic culture condition: effect of light intensity, glucose concentration and fed-batch cultivation. Bioresource Technology, 110, 510–516.

    Article  CAS  Google Scholar 

  4. Choi, J. A., Kim, D. Y., Seo, Y. H., & Han, J. I. (2016). Application of Fe (NO 3) 3-based as nitrogen source and coagulant for cultivation and harvesting of Chlorella sorokiniana. Bioresource Technology, 222, 374–379.

    Article  CAS  Google Scholar 

  5. Chung, J., Lee, I., & Han, J. I. (2016). Biodiesel production from oleaginous yeasts using livestock wastewater as nutrient source after phosphate struvite recovery. Fuel, 186, 305–310.

    Article  CAS  Google Scholar 

  6. Duarte, J. H., Fanka, L. S., & Costa, J. A. V. (2016). Utilization of simulated flue gas containing CO 2, SO 2, NO and ash for Chlorella fusca cultivation. Bioresource Technology, 214, 159–165.

    Article  CAS  Google Scholar 

  7. Farooq, W., Lee, Y. C., Ryu, B. G., Kim, B. H., Kim, H. S., Choi, Y. E., & Yang, J. W. (2013). Two-stage cultivation of two Chlorella sp. strains by simultaneous treatment of brewery wastewater and maximizing lipid productivity. Bioresource Technology, 132, 230–238.

    Article  CAS  Google Scholar 

  8. Geciova, J., Bury, D., & Jelen, P. (2002). Methods for disruption of microbial cells for potential use in the dairy industry—a review. International Dairy Journal, 12, 541–553.

    Article  CAS  Google Scholar 

  9. Huang, C., Chen, X. F., **ong, L., Ma, L. L., & Chen, Y. (2013). Single cell oil production from low-cost substrates: the possibility and potential of its industrialization. Biotechnology Advances, 31(2), 129–139.

    Article  CAS  Google Scholar 

  10. Isleten-Hosoglu, M., Ayyildiz-Tamis, D., Zengin, G., & Elibol, M. (2013). Enhanced growth and lipid accumulation by a new Ettlia texensis isolate under optimized photoheterotrophic condition. Bioresource Technology, 131, 258–265.

    Article  CAS  Google Scholar 

  11. Kim, M., Shin, W., & Sohn, H. (2015). Application of the lees of domestic traditional wine and its useful biological activity. Journal of Life Sciences, 25, 1072–1079.

    Google Scholar 

  12. Lee, H. S., Hong, K. H., Kim, J. Y., Kim, D. H., Yoon, C. H., & Kim, S. M. (2009). Blood pressure lowering effect of Korean turbid rice wine (Takju) lees extracts in spontaneously hypertensive rat (SHR). Journal of the Korean Society of Food Culture, 24(3), 338–343.

    Google Scholar 

  13. Li, Y. R., Tsai, W. T., Hsu, Y. C., **e, M. Z., & Chen, J. J. (2014). Comparison of autotrophic and mixotrophic cultivation of green microalgal for biodiesel production. Energy Procedia, 52, 371–376.

    Article  Google Scholar 

  14. Liang, Y., Sarkany, N., & Cui, Y. (2009). Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotechnology Letters, 31, 1043–1049.

    Article  CAS  Google Scholar 

  15. Perez-Garcia, O., Escalante, F. M., de-Bashan, L. E., & Bashan, Y. (2011). Heterotrophic cultures of microalgae: metabolism and potential products. Water Research, 45(1), 11–36.

    Article  CAS  Google Scholar 

  16. Ramos, M. J., Fernández, C. M., Casas, A., Rodríguez, L., & Pérez, Á. (2009). Influence of fatty acid composition of raw materials on biodiesel properties. Bioresource Technology, 100, 261–268.

    Article  CAS  Google Scholar 

  17. Ratledge, C. (1991). Microorganisms for lipids. Engineering in Life Sciences, 11(5), 429–438.

    CAS  Google Scholar 

  18. Ryu, B. G., Kim, J., Kim, K., Choi, Y. E., Han, J. I., & Yang, J. W. (2013). High-cell-density cultivation of oleaginous yeast Cryptococcus curvatus for biodiesel production using organic waste from the brewery industry. Bioresource Technology, 135, 357–364.

    Article  CAS  Google Scholar 

  19. Schneider, T., Graeff-Hönninger, S., French, W. T., Hernandez, R., Merkt, N., Claupein, W., Hetrick, M., & Pham, P. (2013). Lipid and carotenoid production by oleaginous red yeast Rhodotorula glutinis cultivated on brewery effluents. Energy, 61, 34–43.

    Article  CAS  Google Scholar 

  20. Seo, G. U., Choi, S. Y., Kim, T. W., Ryu, S. G., Park, J. H., & Lee, S. C. (2013). Functional activities of Makgeolli by-products as cosmetic materials. Journal of the Korean Society of Food Science and Nutrition, 42(4), 505–511.

    Article  CAS  Google Scholar 

  21. Seo, Y. H., Lee, I., Jeon, S. H., & Han, J.-I. (2014). Efficient conversion from cheese whey to lipid using Cryptococcus curvatus. Biochemical Engineering Journal, 90, 149–153.

    Article  CAS  Google Scholar 

  22. Šoštarič, M., Klinar, D., Bricelj, M., Golob, J., Berovič, M., & Likozar, B. (2012). Growth, lipid extraction and thermal degradation of the microalga Chlorella vulgaris. New Biotechnology, 29(3), 325–331.

    Article  Google Scholar 

  23. Stansell, G. R., Gray, V. M., & Sym, S. D. (2012). Microalgal fatty acid composition: implications for biodiesel quality. Journal of Applied Phycology, 24, 791–801.

    Article  CAS  Google Scholar 

  24. Sung, M., Seo, Y. H., Han, S., & Han, J. I. (2014). Biodiesel production from yeast Cryptococcus sp. using Jerusalem artichoke. Bioresource Technology, 155, 77–83.

    Article  CAS  Google Scholar 

  25. Tanguler, H., & Erten, H. (2008). Utilisation of spent brewer’s yeast for yeast extract production by autolysis: the effect of temperature. Food and Bioproducts Processing, 86, 317–321.

    Article  Google Scholar 

  26. Waters, D. L. E., Henry, R. J., Reinke, R. F., & Fitzgerald, M. A. (2006). Gelatinization temperature of rice explained by polymorphisms in starch synthase. Plant Biotechnology Journal, 4, 115–122.

    Article  CAS  Google Scholar 

  27. Wei, A., Zhang, X., Wei, D., Chen, G., Wu, Q., & Yang, S.-T. (2009). Effects of cassava starch hydrolysate on cell growth and lipid accumulation of the heterotrophic microalgae Chlorella protothecoides. Journal of Industrial Microbiology & Biotechnology, 36, 1383.

    Article  CAS  Google Scholar 

  28. Xue, F., Gao, B., Zhu, Y., Zhang, X., Feng, W., & Tan, T. (2010). Pilot-scale production of microbial lipid using starch wastewater as raw material. Bioresource Technology, 101, 6092–6095.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by Grant KK-1605 from the Korea Institute of Toxicology. This work is also financially supported by Korea Minister of Ministry of Land, Infrastructure and Transport (MOLIT) as U-City Masters and Doctor Course Grant Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong-In Han.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kam, Y., Sung, M., Cho, H. et al. Utilization of Starch-Enriched Brewery (Rice Wine) Waste for Mixotrophic Cultivation of Ettlia Sp. YC001 Used in Biodiesel Production. Appl Biochem Biotechnol 183, 1478–1487 (2017). https://doi.org/10.1007/s12010-017-2515-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-017-2515-3

Keywords

Navigation