Log in

Mineral Composition of the Sugarcane Juice and Its Influence on the Ethanol Fermentation

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In the present work, we evaluated the mineral composition of three sugarcane varieties from different areas in northeast Brazil and their influence on the fermentation performance of Saccharomyces cerevisiae. The mineral composition was homogeneous in the different areas investigated. However, large variation coefficients were observed for concentrations of copper, magnesium, zinc and phosphorus. Regarding the fermentation performances, the sugarcane juices with the highest magnesium concentration showed the highest ethanol yield. Synthetic media supplemented with magnesium also showed the highest yield (0.45 g g−1) while the excess of copper led to the lowest yield (0.35 g g−1). According to our results, the magnesium is the principal responsible for the increase on the ethanol yield, and it also seems to be able to disguise the inhibitory effects of the toxic minerals present in the sugarcane juice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Basso, L. C., Basso, T. O., & Rocha, S. N. (2011). Ethanol production in Brazil: the industrial process and Its impact on yeast fermentation. In M. A. S. Bernardes (Ed.), Biofuel production-recent developments and prospects (pp. 85–100). Rijeka: Intech.

    Google Scholar 

  2. Amorim, H. V., Basso, L. C., & Lopes, M. L. (2009). Sugar cane juice and molasses, beet molasses and sweet sorghum: composition and usage. In W. M. Ingledew, G. D. Austin, C. Kluhspies, & D. R. Kelsall (Eds.), The alcohol textbook (5th ed., pp. 39–46). Nottingham: Nottingham University Press.

    Google Scholar 

  3. Walker, G. M. (2004). Advances in Applied Microbiology, 54, 197–229.

    Article  CAS  Google Scholar 

  4. Stehlik-Thomas, V., Zetic, V. G., Stanzer, D., Grba, S., & Vahcic, N. (2004). Food Technology and Biotechnology, 42, 115–120.

    Google Scholar 

  5. Siverio, J. M. (2002). FEMS Microbiology Review, 26, 277–284.

    Article  CAS  Google Scholar 

  6. Jones, R. P., & Greenfield, P. F. (1994). Process Biochemistry, 4, 48–59.

    Google Scholar 

  7. Youatt, J. (1993). Critical Reviews in Microbiology, 19, 83–97.

    Article  CAS  Google Scholar 

  8. Vasconcelos, J. N. (1987). Brasil Açucareiro, 105, 41–48.

    Google Scholar 

  9. Courchesne, W. E., Vlasek, C., Klukovich, R., & Coffee, S. (2011). Archives of Microbiology, 193, 323–334.

    CAS  Google Scholar 

  10. De Lucena, R. M., Elsztein, C., Simões, D. A., & Morais, M. A., Jr. (2012). Journal of Applied Microbiology, 113, 629–640.

    Article  Google Scholar 

  11. Cyert, M. S. (2003). Biochemical and Biophysical Research Communications, 311, 1143–1150.

    Article  CAS  Google Scholar 

  12. Zhao, X. Q., & Bai, F. W. (2011). Journal of Biotechnology, 158, 176–183.

    Article  Google Scholar 

  13. Magonet, E., Hayen, P., Delforge, D., Delaive, E., & Remacle, J. (1992). Journal of Biochemistry, 287, 361–365.

    CAS  Google Scholar 

  14. Berg, J. M., Tymoczko, J. L., & Stryer, L. (2002). Biochemistry (5th ed., p. 270). New York: WH Free-man and company. 465, 687.

    Google Scholar 

  15. Jones, R. P., & Gadd, G. M. (1990). Enzyme and Microbial Technology, 12, 1–17.

    Article  Google Scholar 

  16. De Freitas, J., Wintz, H., Kim, J. H., Poynton, H., Fox, T., & Vulpe, C. (2003). Biometals, 16, 97–185.

    Article  Google Scholar 

  17. Blackwell, K. J., Tobin, J. M., & Avery, S. V. (1997). Applied Microbiology and Biotechnology, 47, 180–184.

    Article  CAS  Google Scholar 

  18. Pas, M., Piskur, B., Sustaric, M., & Raspor, P. (2007). Bioresource Technology, 98, 1622–1628.

    Article  CAS  Google Scholar 

  19. Philpott, C. C., & Protchenko, O. (2008). Eukaryotic Cell, 7, 7–20.

    Article  Google Scholar 

  20. Haug, A. (1984). Critical Reviews in Plant Sciences, 1, 345–373.

    Article  CAS  Google Scholar 

  21. Oliveira, R. P. S., Torres, B. R., Zilli, M., Marques, D. A. V., Basso, L. C., & Converti, A. (2009). Archives of Environmental Contamination and Toxicology, 57, 488–494.

    Article  Google Scholar 

  22. De Souza-Liberal, A. T., da Silva, F. E. A., de Morais, J. O. F., Simões, D. A., & Morais, M. A., Jr. (2005). Letters in Applied Microbiology, 40, 19–23.

    Article  Google Scholar 

  23. De Souza-Liberal, A. T., Basílio, A. C. M., Brasileiro, B. T. R. V., Silva- Filho, E. A., Simões, D. A., & Morais, M. A., Jr. (2007). Journal of Applied Microbiology, 102, 538–547.

    Article  Google Scholar 

  24. Basílio, A. C. M., Araújo, P. R. L., Morais, J. O. F., Silva-Filho, E. A., Morais, M. A., Jr., & Simões, D. A. (2008). Current Microbiology, 56, 322–326.

    Article  Google Scholar 

  25. Lucena, B. T. L., Santos, B. M., Moreira, J. L. S., Moreira, A. P. B., Nunes, A. C., Azevedo, V., Miyoshi, A., Thompson, F. L., & Morais, M. A., Jr. (2010). BMC Microbiology, 10, e298.

    Article  Google Scholar 

  26. EMBRAPA – Empresa Brasileira de Pesquisa Agropecuária. Centro Nacional de Pesquisa de Solos. (2006). Sistema brasileiro de classificação de solos. Brasília: Embrapa Produção de Informação.

    Google Scholar 

  27. Thomas, R. L., Shearrd, R. W., & Moyer, J. R. (1967). Agronomy Journal, 59, 240–243.

    Article  CAS  Google Scholar 

  28. EMBRAPA - Empresa Brasileira de Pesquisa Agropecuária. (1999). Manual de análises químicas de solos, plantas e fertilizantes. Brasília: Informática Agropecuária.

    Google Scholar 

  29. Silva-Filho, E. A., Santos, S. K. B., Resende, A. M., Morais, J. O. F., Morais, M. A., Jr., & Simões, D. A. (2005). Antonie Van Leeuwenhoek, 88, 13–23.

    Article  Google Scholar 

  30. Basso, L. C., de Amorim, H. V., de Oliveira, A. J., & Lopes, M. L. (2008). FEMS Yeast Research, 8, 1155–1163.

    Article  CAS  Google Scholar 

  31. De Souza, R. B., Santos, B. M., De Souza, R. F. R., Silva, P. K. N., Lucena, B. T. L., & Morais, M. A., Jr. (2012). Journal of Industrial Microbiology and Biotechnology, 39, 1645–1650.

    Article  CAS  Google Scholar 

  32. Silva, F. A. S., & Azevedo, C. A. V. (2002). Revista Brasileira de Produtos Agroindustriais, 4, 71–78.

    Google Scholar 

  33. Pereira, L. P., Bassi, A. P. G., Avansini, S. H., Barbosa-Neto, A. G., Brasileiro, B. T. R. V., Ceccato-Antonini, S. R., & Morais, M. A., Jr. (2012). Antonie Van Leeuwenhoek, 101, 529–539.

    Article  CAS  Google Scholar 

  34. De Barros Pita, W., Leite, F. C. B., De Souza Liberal, A. T., Simões, D. A., & De Morais, M. A., Jr. (2011). Antonie Van Leeuwenhoek, 100, 99–107.

    Article  Google Scholar 

  35. Karamushka, V. I., & Gadd, G. M. (1994). FEMS Microbiology Letters, 122, 33–38.

    Article  CAS  Google Scholar 

  36. Magasanik, B. (1992). Gene Expression, 2, 283–317.

    Google Scholar 

  37. Chandrasena, G., & Walker, G. M. (1997). Journal of the American Society of Brewing Chemists, 55, 24–29.

    CAS  Google Scholar 

  38. Schreier, B., & Hocker, B. (2010). Biochemistry, 49, 7582–7589.

    Article  CAS  Google Scholar 

  39. Bollenback, T., & Nowak, T. (2001). Biochemistry, 40, 13097–13106.

    Article  Google Scholar 

  40. König, S. (1998). Biochemica et Biophysica Acta, 1385, 271–286.

    Article  Google Scholar 

  41. Tun, N. M., O’Doherty, P. J., Perrone, G. G., Bailey, T. D., Kersaitis, C., & Wu, M. J. (2013). Metallomics, 5, 1068–1075.

    Article  CAS  Google Scholar 

  42. Cyert, M. S., & Philpott, C. C. (2013). Genetics, 193, 677–713.

    Article  CAS  Google Scholar 

  43. Azenha, M., & Vasconcelos, M. T. (2000). Journal of Bioscience and Bioengineering, 90, 163–167.

    Article  CAS  Google Scholar 

  44. Bleackey, M. R., & MacGillivray, R. T. (2011). Biometals, 24, 785–809.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to all distilleries and farms that provided sugarcanes and fermentation samples for the experimental work. This work was supported by grants from the National Council of Technological and Scientific Development (CNPq) and the Bioethanol Research Network of the State of Pernambuco (CNPq-FACEPE/PRONEM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcos Antonio de Morais Jr.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Souza, R.B., de Menezes, J.A.S., de Souza, R.d.F.R. et al. Mineral Composition of the Sugarcane Juice and Its Influence on the Ethanol Fermentation. Appl Biochem Biotechnol 175, 209–222 (2015). https://doi.org/10.1007/s12010-014-1258-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1258-7

Keywords

Navigation