Log in

Metabolic Engineering of Nocardia sp. CS682 for Enhanced Production of Nargenicin A1

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A number of secondary metabolites having therapeutic importance have been reported from the genus Nocardia. One of the polyketide antibiotic compounds isolated from Nocardia is nargenicin A1. Recently, nargenicin A1 has been isolated from Nocardia sp. CS682, a new Nocardia strain isolated from soil in Jeonnam, South Korea. It possesses strong antibacterial activity against methicillin-resistant Staphylococcus aureus. In this study, we applied a metabolic engineering approach based on recombinant DNA technology in order to boost the production of nargenicin A1 from Nocardia sp. CS682. Initially, we optimized the transformation of this new strain by electroporation method. Heterologous expression of S-adenosylmethionine synthetase (MetK1-sp) in Nocardia sp. CS682 enhanced the production of nargenicin A1 by about 2.8 times due to transcriptional activation of biosynthetic genes as revealed by reverse transcription polymerase chain reaction analysis. Similarly, expression of acetyl-CoA carboxylase genes improved nargenicin A1 production by about 3.8 times in Nocardia sp. ACC18 compared to that in Nocardia sp. CS682 and Nocardia sp. NV18 by increasing precursor pool. Thus, enhanced production of nargenicin A1 from Nocardia sp. CS682 can be achieved by expression of transcriptional activator genes and precursor genes from Streptomyces strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Brown-Elliott, B. A., Brown, J. M., Conville, P. S., & Wallace, R. J. (2006). Clinical Microbiology Reviews, 19, 259–282.

    Article  CAS  Google Scholar 

  2. Kavitha, A., Prabhakar, P., Vijayalakshmi, M., & Venkateswarlu, Y. (2009). Letters in Applied Microbiology, 49, 484–490.

    Article  CAS  Google Scholar 

  3. Hoshino, Y., Mukai, A., Yazawa, K., Uno, J., Ishikawa, J., Ando, A., Fukai, T., & Mikami, Y. (2004). Journal of Antibiotics, 57, 792–802.

    Google Scholar 

  4. Tsuda, M., Sato, H., Tanaka, Y., Yazawa, K., Mikami, Y., Sasaki, T., & Kobayashi, J. (1996). J. Chem. Soc. Perkins Trans., 1, 1773–1775.

    Google Scholar 

  5. Tsuda, M., Nemoto, A., Komaki, H., Tanaka, Y., Yazawa, K., Mikami, Y., & Kobayashi, J. (1999). Journal of Natural Products, 62, 1640–1642.

    Article  CAS  Google Scholar 

  6. Celmer, W. D., Chmurny, G. N., Moppett, C. E., Ware, R. S., Watts, P. C., & Whipple, E. B. (1980). Journal of the American Chemical Society, 102, 4203–4209.

    Article  CAS  Google Scholar 

  7. Blaine, L. B., & Beaman, L. (1994). Clinical Microbiology Reviews, 7, 213–264.

    Google Scholar 

  8. Whaley, H. A., Chidester, C. G., Mizsak, S. A., & Wnuk, R. J. (1980). Tetrahedron Letters, 21, 3659–3662.

    Article  CAS  Google Scholar 

  9. Sohng, J. K., Yamaguchi, T., Seong, C. N., Baik, K. S., Park, S. C., Lee, H. J., Jang, S. Y., Simkhada, J. R., & Yoo, J. C. (2008). Archives of Pharmacal Research, 3, 1339–1345.

    Article  Google Scholar 

  10. Seung, H. K., Yoo, J. C., & Kim, T. S. (2009). Bio. Chem. Pharm., 77, 1694–1701.

    Article  Google Scholar 

  11. Olano, C., Lombo, F., Mendez, C., & Salas, J. A. (2008). Metabolic Engineering, 10, 281–292.

    Article  CAS  Google Scholar 

  12. Ryu, Y. G., Butler, M. J., Chater, K. F., & Lee, K. J. (2006). Applied and Environmental Microbiology, 72, 7132–7139.

    Article  CAS  Google Scholar 

  13. Rodriguez, E., Banchio, C., Diacovich, L., Bibb, M. J., & Gramajo, H. (2001). Applied and Environmental Microbiology, 67, 4166–4176.

    Article  CAS  Google Scholar 

  14. Cane, D. E., & Yang, C. C. (1984). Journal of the American Chemical Society, 106, 784–787.

    Article  CAS  Google Scholar 

  15. Kim, D. J., Huh, J. H., Yang, Y. Y., Kang, C. M., Lee, I. H., Hyun, C. G., Hong, S. K., & Suh, J. W. (2003). Journal of Bacteriology, 185, 592–600.

    Article  CAS  Google Scholar 

  16. Okamoto, S., Lezhava, A., Hosaka, T., Okamoto-Hosoya, Y., & Ochi, K. (2003). Journal of Bacteriology, 185, 601–609.

    Article  CAS  Google Scholar 

  17. Shin, S. K., Park, H. S., & Kwon, H. J. (2007). Journal of Microbiology and Biotechnology, 17, 1818–1825.

    CAS  Google Scholar 

  18. Maharjan, S., Oh, T. J., Lee, H. C., & Sohng, J. K. (2008). Biotechnology Letters, 30, 1621–1626.

    Article  CAS  Google Scholar 

  19. Chiba, K., Hoshino, Y., Ishino, K., Kogure, T., Mikami, Y., Uehara, Y., & Ishikawa, T. (2007). Japanese Journal of Infectious Diseases, 60, 45–47.

    CAS  Google Scholar 

  20. Maharjan, S., Oh, T. J., Park, J. W., Yoon, Y. J., Lee, H. C., & Sohng, J. K. (2009). Biotechnology Letters, 32, 277–282.

    Article  Google Scholar 

  21. Cho, S. S., Sohng, J. K., Lee, H. J., Park, S. J., Simkhada, J. R., & Yoo, J. C. (2009). Archives of Pharmacal Research, 32, 335–340.

    Article  CAS  Google Scholar 

  22. Park, J. W., Jung, W. S., Park, S. R., Park, B. C., & Yoon, Y. J. (2007). Journal of Mass Spectrometry, 42, 1136–1147.

    Article  CAS  Google Scholar 

  23. Zhao, X. Q., **, Y. Y., & Kwon, H. J. (2006). Journal of Microbiology and Biotechnology, 16, 927–932.

    CAS  Google Scholar 

  24. Hoshino, Y., Chiba, K., Ishino, K., Fukai, T., Igarashi, Y., Yazawa, K., Mikami, Y., & Ishikawa, J. (2011). Journal of Bacteriology, 193, 441–448.

    Article  CAS  Google Scholar 

  25. Hoshino, Y., Fujii, S., Shinonaga, H., Arai, K., Saito, F., Fukai, T., Satoh, H., Miyazaki, Y., & Ishikawa, J. (2010). Journal of Antibiotics, 63, 23–28.

    Article  CAS  Google Scholar 

  26. Ishikawa, J., Chiba, K., Kurita, H., & Satoh, H. (2006). Antimicrobial Agents and Chemotherapy, 50, 1342–1346.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Technology Development Program for Agriculture and Forestry, Ministry of Agriculture and Forestry (20100368), Republic of Korea, 2010 and by the National Research Foundation of Korea (the Global Frontier Program for the Intelligent Synthetic Biology). We are grateful to Professor Kazuhiro Chiba for providing Nocardia–E. coli shuttle vectors, pNV18 and pNV19.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae Kyung Sohng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maharjan, S., Koju, D., Lee, H.C. et al. Metabolic Engineering of Nocardia sp. CS682 for Enhanced Production of Nargenicin A1 . Appl Biochem Biotechnol 166, 805–817 (2012). https://doi.org/10.1007/s12010-011-9470-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-011-9470-1

Keywords

Navigation