Log in

Substrate Specificity and Thermostability of the Dehairing Alkaline Protease from Bacillus pumilus

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

An alkaline protease (DHAP) from Bacillus pumilus has shown great potential in hide dehairing. To get better insights on its catalytic properties for application, the substrate specificity and thermostability were investigated using five natural proteins and nine synthetic peptides. The results showed that DHAP could hydrolyze five proteins tested here in different specificity. Collagen, a component of animal skin, was more resistant to hydrolysis than casein, fibrin, and gelatin. Among the synthetic peptides, the enzyme showed activity mainly with tetrapeptide substrates with the catalytic efficiency in order of Phe>Leu>Ala at P1 site, although k m value for AAVA-pN is much lower than that for AAPL-pN and AAPF-pN. With tripeptide substrates, smaller side-chain group (Gly) at P1 site was not hydrolyzed by DHAP. The enzyme showed good thermostability below 60 °C, and lost activity so quickly above 70 °C. The thermostability was largely dependent on metal ion, especially Ca2+, although other ions, like Mg2+, Mn2+, and Co2+, could sustain stability at certain extent within limited time. Cu2+, Fe2+, as well as Al3+, did not support the enzyme to retain activity at 60 °C even in 5 min. In addition, the selected metal ions could coordinate calcium in improvement or destruction of thermostability for DHAP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rao, M. B., Tanksale, A. M., Ghatge, M. S., & Deshpande, V. V. (1998). Microbiology and Molecular Biology Reviews, 62, 597–635.

    CAS  Google Scholar 

  2. Bryan, P. N. (2000). Biochimica et Biophysica Acta, 1543, 203–222.

    CAS  Google Scholar 

  3. Thanilaivelan, P., Rao, J. R., Nair, B. U., & Ramasami, T. (2004). Trends in Biotechnology, 22, 181–188. doi:10.1016/j.tibtech.2004.02.008.

    Article  CAS  Google Scholar 

  4. Nilegaonkar, S. S., Zambare, V. P., Kanekar, P. P., Dhakephalkar, P. K., & Sarnaik, S. S. (2007). Bioresource Technology, 98, 1238–1245. doi:10.1016/j.biortech.2006.05.003.

    Article  CAS  Google Scholar 

  5. Macedo, A. J., Beys da Silva, W. O., Gava, R., Driemeier, D., Henriques, J. A. P., & Termignoni, C. (2005). Applied and Environmental Microbiology, 71, 594–596. doi:10.1128/AEM.71.1.594-596.2005.

    Article  CAS  Google Scholar 

  6. Wang, H. Y., Liu, D. M., Liu, Y., Cheng, C. F., Ma, Q. Y., Huang, Q., et al. (2007). Letters in Applied Microbiology, 44, 1–6. doi:10.1111/j.1472-765X.2006.02039.x.

    Article  CAS  Google Scholar 

  7. Huang, Q., Peng, Y., Li, X., Wang, H. F., & Zhang, Y. Z. (2003). Current Microbiology, 46, 169–173. doi:10.1007/s00284-002-3850-2.

    Article  CAS  Google Scholar 

  8. Pan, J., Huang, Q., & Zhang, Y. Z. (2004). Current Microbiology, 49, 165–169. doi:10.1007/s00284-004-4305-8.

    Article  CAS  Google Scholar 

  9. Kumar, C. G. (2002). Letters in Applied Microbiology, 34, 13–17. doi:10.1046/j.1472-765x.2002.01044.x.

    Article  CAS  Google Scholar 

  10. Han, X. Q., & Damodaran, S. (1998). Journal of Agricultural and Food Chemistry, 46, 3596–3603. doi:10.1021/jf980361m.

    Article  CAS  Google Scholar 

  11. Takahashi, M., Sekine, T., Kuba, N., Nakamori, S., Yasuda, M., & Takagi, H. (2004). Journal of Biochemistry, 136, 549–556. doi:10.1093/jb/mvh158.

    Article  CAS  Google Scholar 

  12. Yasuda, M., Aoyama, M., Sakaguchi, M., Nakachi, K., & Kobamoto, N. (1999). Applied Microbiology and Biotechnology, 51, 474–479. doi:10.1007/s002530051419.

    Article  CAS  Google Scholar 

  13. Aoyama, M., Yasuda, M., Nakachi, K., Kobamoto, N., Oku, H., & Kato, F. (2000). Applied Microbiology and Biotechnology, 53, 390–395. doi:10.1007/s002530051631.

    Article  CAS  Google Scholar 

  14. Miyaji, T., Otta, Y., Makagawa, T., Watanabe, T., Niimura, Y., & Tomizuka, N. (2006). Letters in Applied Microbiology, 42, 242–247. doi:10.1111/j.1472-765X.2005.01851.x.

    Article  CAS  Google Scholar 

  15. Jaouadi, B., Ellouz-Chaabouni, S., Rhimi, M., & Bejar, S. (2008). Biochimie, 90, 1291–1305. doi:10.1016/j.biochi.2008.03.004.

    Article  CAS  Google Scholar 

  16. Gupta, R., Beg, Q. K., & Lorenz, P. (2002). Applied Microbiology and Biotechnology, 59, 15–32. doi:10.1007/s00253-002-0975-y.

    Article  CAS  Google Scholar 

  17. Bakhtiar, S., Estiveira, R. J., & Hatti-Kaul, R. (2005). Enzyme and Microbial Technology, 37, 534–540. doi:10.1016/j.enzmictec.2005.04.003.

    Article  CAS  Google Scholar 

  18. Perona, J. J., & Craik, C. S. (1995). Protein Science, 4, 337–360.

    Article  CAS  Google Scholar 

  19. Strausberg, S. L., Ruan, B., Fisher, K. E., Alexander, P. A., & Bryan, P. N. (2005). Biochemistry, 44, 3272–3279. doi:10.1021/bi047806m.

    Article  CAS  Google Scholar 

  20. Alexander, P. A., Ruan, B., & Bryan, P. N. (2001). Biochemistry, 40, 10634–10639. doi:10.1021/bi010797m.

    Article  CAS  Google Scholar 

  21. Ghorbel, B., Sellami-kamoun, A., & Nasri, M. (2003). Enzyme and Microbial Technology, 32, 513–518. doi:10.1016/S0141-0229(03)00004-8.

    Article  CAS  Google Scholar 

  22. Alexander, P. A., Ruan, B., Strausberg, S. L., & Bryan, P. N. (2001). Biochemistry, 40, 10640–10644. doi:10.1021/bi010798e.

    Article  CAS  Google Scholar 

  23. Kidd, R. D., Yennawar, H. P., Sears, P., Wong, C.-H., & Farber, G. K. (1996). Journal of the American Chemical Society, 118, 1645–1650. doi:10.1021/ja953443p.

    Article  CAS  Google Scholar 

  24. Lee, S., & Jang, D. J. (2001). Biophysical Journal, 81, 2972–2978.

    Article  CAS  Google Scholar 

  25. Podsiadlo, P., Komiyama, T., Fuller, R. S., & Blum, O. (2004). The Journal of Biological Chemistry, 279, 36219–36227. doi:10.1074/jbc.M400338200.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work is supported by the “863” High Tech Program (2006AA02Z221) from the Department of Science and Technology of China to H. F.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Feng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wan, MY., Wang, HY., Zhang, YZ. et al. Substrate Specificity and Thermostability of the Dehairing Alkaline Protease from Bacillus pumilus . Appl Biochem Biotechnol 159, 394–403 (2009). https://doi.org/10.1007/s12010-008-8497-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-008-8497-4

Keywords

Navigation