Log in

Purification and Biochemical Characterization of Extracellular β-Glucosidases from the Hypercellulolytic Pol6 Mutant of Penicillium occitanis

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The Pol6 mutant of Penicillium occitanis fungus is of great biotechnological interest since it possesses a high capacity of cellulases and β-glucosidase production with high cellulose degradation efficiency (Jain et al., Enzyme Microb Technol, 12:691–696, 1990; Hadj-Taieb et al., Appl Microbiol Biotechnol, 37:197–201, 1992; Ellouz Chaabouni et al., Enzyme Microb Technol, 16:538–542, 1994; Ellouz Chaabouni et al., Appl Microbiol Biotechnol, 43:267–269, 1995). In this work, two forms of β-glucosidase (β-glu 1 and β-glu 2) were purified from the culture supernatant of the Pol6 strain by gel filtration, ion exchange chromatography, and preparative anionic native electrophoresis. These enzymes were eluted as two distinct species from the diethylamino ethanol Sepharose CL6B and anionic native electrophoresis. However, both behaved identically on sodium dodecyl sulfate polyacrylamide gel electrophoresis (MW, 98 kDa), shared the same amino acid composition, carbohydrate content (8%), and kinetic properties. Moreover, they strongly cross-reacted immunologically. They were active on cellobiose and pNPG with Km values of 1.43 and 0.37 mM, respectively. β-glu 1 and β-glu 2 were competitively inhibited by 1 mM of glucose and 0.03 mM of δ-gluconolactone. They were also significantly inhibited by Hg2+ and Cu2 at 2 mM. The addition of purified enzymes to the poor β-glucosidase crude extract of Trichoderma reesei increased its hydrolytic efficiency on H3P04 swollen cellulose but had no effect with P. occitanis crude extract. Besides their hydrolytic activities, β-glu 1 and β-glu 2 were endowed with trans-glycosidase activity at high concentration of glucose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

X-glu:

5-bromo,4-chloro,3-indolyl,1,4β-glucopyranoside

Tris:

trishydroxymethylaminomethane

EDTA:

ethylene-diaminetetraacetic acid

p-NP:

p-nitrophenol

pNPG:

p-nitrophenyl-β-d-glucopyranoside

PMSF:

phenylmethylsulfonyl fluoride

References

  1. Enari, T. M. (1983). In N. M. Fagarty (Ed.) Microbial cellulases. I. Microbial enzymes and biotechnology pp. 183–223. London: Applied Science Publisher.

    Google Scholar 

  2. Esen, A. (1993). In A. Esen (Ed.) b-glucosidases: Overview, biochemistry and molecular biology pp. 1–14. Washington DC, USA: American Chemical Society.

    Google Scholar 

  3. Bhat, M. K. (2000). Biotechnology Advances, 18, 355–383.

    Article  CAS  Google Scholar 

  4. Gargouri, M., Smaali, I., Maugard, T., Legoy, M. D., & Marzouki, N. (2004). Journal of Molecular Catalysis. B, Enzymatic, 29, 89–94.

    Article  CAS  Google Scholar 

  5. Jain, S., Parriche, M., Durand, H., & Tiraby, G. (1990). Enzyme and Microbial Technology, 12, 691–696.

    Article  CAS  Google Scholar 

  6. Hadj-Taieb, N., Chaabouni Ellouz, S., Kammoun, A., & Ellouz, R. (1992). Applied Microbiology and Biotechnology, 37, 197–201.

    Article  CAS  Google Scholar 

  7. Ellouz Chaabouni, S., Hadj-Taieb, N., Mosrati, R., & Ellouz, R. (1994). Enzyme and Microbial Technology, 16, 538–542.

    Article  Google Scholar 

  8. Ellouz Chaabouni, S., Belguith, H., Hsairi, I., M’rad, K., & Ellouz, R. (1995). Applied Microbiology and Biotechnology, 43, 267–269.

    Article  CAS  Google Scholar 

  9. Limam, F., Ellouz Chaabouni, S., Ghrir, R., & Marzouki, N. (1995). Enzyme and Microbial Technology, 17, 340–346.

    Article  CAS  Google Scholar 

  10. Ellouz Chaabouni, S., Mechichi, T., Limam, F., & Marzouki, N. (2005). Applied Biochemistry and Biotechnology, 125, 99–112.

    Article  Google Scholar 

  11. Mandels, M., & Weber, J. (1969). Advances in Chemistry Series, 95, 391–412.

    Article  CAS  Google Scholar 

  12. Wood, T. M., & Bhat, M. K. (1988). In W. A. Wood, & S. T. Kellog (Eds.) Methods in enzymology (vol. 160, pp. 87–116). New York: Academic.

    Google Scholar 

  13. Trinder, J. (1969). Annals of Clinical Biochemistry, 6, 24–25.

    CAS  Google Scholar 

  14. Miller, G. L. (1959). Analytical Chemistry, 31, 426–428.

    Article  CAS  Google Scholar 

  15. Bradford, M. M. (1976). Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  16. Laemmli, U. K., & Favre, M. (1973). Journal of Molecular Biology, 80, 575–599.

    Article  CAS  Google Scholar 

  17. Spiro, R. G. (1966). Methods in Enzymology, 8, 3–26.

    CAS  Google Scholar 

  18. Lakshmi, K., Vartack, H. G., & Jagannath, V. (1985). Biotechnology and Bioengineering, 27, 781–785.

    Article  Google Scholar 

  19. Jacksson, M. A., & Dwight, E. T. (1988). Biotechnology and Bioengineering, 23, 903–909.

    Article  Google Scholar 

  20. Kunio, O., Makoto, S., Yasumasa, K., & Shoichi, S. (1985). Journal of Bacteriology, 161, 432–434.

    Google Scholar 

  21. Woodward, J., & Wiseman, A. (1982). Enzyme and Microbial Technology, 4, 73–79.

    Article  CAS  Google Scholar 

  22. Chen, H., Hayen, M., & Esterbauer, H. (1992). Biochem Biophys Acta, 1121, 54–60.

    CAS  Google Scholar 

  23. McHale, A., & Coughlan, M. P. (1982). Journal of General Microbiology, 128, 2327–2331.

    CAS  Google Scholar 

  24. Dekker, R. F. H. (1981). Journal of Microbiology, 127, 177–184.

    CAS  Google Scholar 

  25. Hidalgo, M., Steiner, J., & Eyzaguirre, J. (1992). Biotechnology and Applied Biochemistry, 15, 185–191.

    CAS  Google Scholar 

  26. Kitpreechavanich, V., Hayachi, M., & Nagai, S. (1986). Agricultural and Biological Chemistry, 50, 1703–1711.

    CAS  Google Scholar 

  27. Vanderjagt, D. J., Fry, D. E., & Glew, R. H. (1994). Biochemical Journal, 300, 309–315.

    CAS  Google Scholar 

  28. Kuriyama, K. (1995). Bioscience, Biotechnology, and Biochemistry, 59, 1142–1143.

    Article  CAS  Google Scholar 

  29. Christakopoulos, P., Goodenough, P. W., Kekos, D., Macris, B. J., Claeyssens, M., & Bhat, M. K. (1994). European Journal of Biochemistry, 224, 379–385.

    Article  CAS  Google Scholar 

  30. Watt, D. K., Ono, H., & Hayashi, K. (1998). Biochem Biophys Acta, 1385, 78–88.

    CAS  Google Scholar 

  31. Himmel, M. E., Adney, W. S., Fox, J. W., Mitchell, D. J., & Baker, J. O. (1993). Applied Biochemistry and Biotechnology, 39140, 213–225.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Prof. G. Tiraby and Dr. H. Durand (Cayla Company, France) for kindly supplying the P. occitanis strain used in this work. Prof. R. Ellouz is thanked for his continual support and his interest for the subject.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Semia Ellouz Chaabouni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhiri, F., Chaabouni, S.E., Limam, F. et al. Purification and Biochemical Characterization of Extracellular β-Glucosidases from the Hypercellulolytic Pol6 Mutant of Penicillium occitanis . Appl Biochem Biotechnol 149, 169–182 (2008). https://doi.org/10.1007/s12010-008-8146-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-008-8146-y

Keywords

Navigation