Log in

Dependency-based FMEA model for product risk analysis: a case study of a switch mode power supply

  • Original Paper
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

The robustness of components/products/systems is a concern for both the company that sells them and the consumers who use them. Failure Modes and Effect Analysis (FMEA) which has evolved over 60 years, is a powerful and effective risk identification tool for both design and manufacturing, often combined with Multiple Criteria Decision-Making methods to increase its utility. However, most previous FMEA studies have neglected the interdependence of the failure modes. To address this issue, this study develops a novel method, the TEchnique for Defining the Influential Relationship of Failure Modes, to determine the risk prioritization of the failure modes. The interaction among failure modes is effectively identified and incorporated into the model. The primary analysis procedure can be divided into three parts: (i) the assessment of the initial risk scores of the failure modes; (ii) the definition of the degree of interdependence among the failure modes; and (iii) the integration of the final risk scores based on dependency. The model is used to conduct a case study for a multinational manufacturer of switch mode power supplies as a demonstration case. The practicality of the proposed model was validated through model comparisons and expert feedback. The results show that “an unstable output voltage”, “no power-good signal”, “recession in efficiency”, “burning out of components”, and “the cooling fan does not operate” are the top five risky failure modes. The research findings can be used as the basis for improvement strategies in R&D design and by quality assurance departments to enhance product reliability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available in the article.

References

  1. Boral, S., Howard, I., Chaturvedi, S.K., McKee, K., Naikan, V.N.A.: An integrated approach for fuzzy failure modes and effects analysis using fuzzy AHP and fuzzy MAIRCA. Eng. Fail. Anal. 108, 104195 (2020)

    Article  Google Scholar 

  2. Cabanes, B., Hubac, S., Le Masson, P., Weil, B.: Improving reliability engineering in product development based on design theory: the case of FMEA in the semiconductor industry. Res. Eng. Des. 32(3), 309–329 (2021)

    Article  Google Scholar 

  3. Peng, H.M., Wang, X.K., Wang, T.L., Liu, Y.H., Wang, J.Q.: Extended failure mode and effect analysis approach based on hesitant fuzzy linguistic Z-numbers for risk prioritisation of nuclear power equipment failures. J. Intell. Fuzzy Syst. 40, 10489–10505 (2021)

    Article  Google Scholar 

  4. Shaker, F., Shahin, A., Jahanyan, S.: Develo** a two-phase QFD for improving FMEA: an integrative approach. Int. J. Qual. Reliab. Manag. 36(8), 1454–1474 (2019)

    Article  Google Scholar 

  5. Ouyang, L., Yan, L., Han, M., Gu, X.: Survey of FMEA methods with improvement on performance inconsistency. Qual. Reliab. Eng. Int. (2021)

  6. Wang, L., Sun, L., Kang, J., Wang, Y., Wang, H.: Risk identification of FPSO oil and gas processing system based on an improved FMEA approach. Appl. Sci. 11(2), 567–585 (2021)

    Article  Google Scholar 

  7. Wu, X., Wu, J.: The risk priority number evaluation of FMEA analysis based on random uncertainty and fuzzy uncertainty. Complexity 2021, 1–15 (2021)

    Google Scholar 

  8. Chang, T.W., Lo, H.W., Chen, K.Y., Liou, J.J.: A novel FMEA model based on rough BWM and rough TOPSIS-AL for risk assessment. Mathematics 7(10), 874–893 (2019)

    Article  Google Scholar 

  9. Wang, Z., Gao, J.M., Wang, R.X., Chen, K., Gao, Z.Y., Zheng, W.: Failure mode and effects analysis by using the house of reliability-based rough VIKOR approach. IEEE Trans. Reliab. 67, 230–248 (2017)

    Article  Google Scholar 

  10. Di Bona, G., Silvestri, A., Forcina, A., Petrillo, A.: Total efficient risk priority number (TERPN): a new method for risk assessment. J. Risk Res. 21(11), 1384–1408 (2018)

    Article  Google Scholar 

  11. Ayber, S., Erginel, N.: Develo** the neutrosophic fuzzy FMEA method as evaluating risk assessment tool. Adv. Intell. Syst. Comput. 1029, 1130–1137 (2020)

    Article  Google Scholar 

  12. Karatop, B., Taşkan, B., Adar, E., Kubat, C.: Decision analysis related to the renewable energy investments in Turkey based on a fuzzy AHP-EDAS-Fuzzy FMEA approach. Comput. Ind. Eng. 151, 106958 (2021)

    Article  Google Scholar 

  13. Ünver, M., Cil, I.: Material selection by using fuzzy complex proportional assessment. Emerg. Mater. Res. 9(1), 93–98 (2020)

    Google Scholar 

  14. Yucesan, M., Gul, M., Celik, E.: A holistic FMEA approach by fuzzy-based Bayesian network and best–worst method. Complex Intell Syst. 7(3), 1547–1564 (2021)

    Article  Google Scholar 

  15. Murumkar, A.B., Teli, S.N., Loni, R.R.: Framework for reduction of quality cost. IJREAM Special Issue-ICSGUPSTM, 156–162 (2018)

  16. Huang, H., Tong, X., Cai, Y., Tian, H.: Gap between discarding and recycling: estimate lifespan of electronic products by survey in formal recycling plants in China. Resour. Conserv. Recycl. 156, 104700 (2020)

    Article  Google Scholar 

  17. Guinot, J., Evans, D., Badar, M.A.: Cost of quality consideration following product launch in a present worth assessment. Int. J. Qual. Reliab. Manag. 33, 399–413 (2016)

    Article  Google Scholar 

  18. Chen, Y., Kang, Y., Zhao, Y., Wang, L., Liu, J., Li, Y., Li, B.: A review of lithium-ion battery safety concerns: the issues, strategies, and testing standards. J. Energy Chem. 59, 83–99 (2021)

    Article  Google Scholar 

  19. Lo, H.W., Liou, J.J.: A novel multiple–criteria decision–making–based FMEA model for risk assessment. Appl. Soft Comput. 73, 684–696 (2018)

    Article  Google Scholar 

  20. Ilbahar, E., Karaşan, A., Cebi, S., Kahraman, C.: A novel approach to risk assessment for occupational health and safety using Pythagorean fuzzy AHP & fuzzy inference system. Saf. Sci. 103, 124–136 (2018)

    Article  Google Scholar 

  21. Tzeng, G.H., Shen, K.Y.: New Concepts and Trends of Hybrid Multiple Criteria Decision Making. CRC Press, pp. 6–7 (2017)

  22. Escobar, C.A., Chakraborty, D., McGovern, M., Macias, D., Morales-Menendez, R.: Quality 4.0–Green, black and master black belt curricula. Procedia Manuf. 53, 748–759 (2021)

    Article  Google Scholar 

  23. Peterson, J.J., Snee, R.D., McAllister, P.R., Schofield, T.L., Carella, A.J.: Statistics in pharmaceutical development and manufacturing. J. Qual. Technol. 41(2), 111–134 (2009)

    Article  Google Scholar 

  24. Eissa, M.E.A.: Extended application of statistical process control-quantitative risk assessment techniques to monitor surgical site infection rates. Int. Med. 1(4), 225–230 (2019)

    Article  Google Scholar 

  25. Gul, M., Ak, M.F.: A comparative outline for quantifying risk ratings in occupational health and safety risk assessment. J. Clean. Prod. 196, 653–664 (2018)

    Article  Google Scholar 

  26. Braglia, M., Gabbrielli, R., Marrazzini, L.: Risk failure deployment: a novel integrated tool to prioritize corrective actions in failure mode and effects analysis. Qual. Reliab. Eng. Int. 37(2), 433–450 (2021)

    Article  Google Scholar 

  27. Yazdi, M.: Improving failure mode and effect analysis (FMEA) with consideration of uncertainty handling as an interactive approach. Int. J. Interact. Des. Manuf. 13(2), 441–458 (2019)

    Article  Google Scholar 

  28. Catelani, M., Ciani, L., Galar, D., Patrizi, G.: Risk assessment of a wind turbine: a new FMECA-based tool with RPN threshold estimation. IEEE Access 8, 20181–20190 (2020)

    Article  Google Scholar 

  29. Dabbagh, R., Yousefi, S.: A hybrid decision-making approach based on FCM and MOORA for occupational health and safety risk analysis. J. Safety Res. 71, 111–123 (2019)

    Article  Google Scholar 

  30. Mgbemena, C.E., Tiwari, A., Xu, Y., Prabhu, V., Hutabarat, W.: Ergonomic evaluation on the manufacturing shop floor: a review of hardware and software technologies. CIRP J. Manuf. Sci. Technol. 30, 68–78 (2020)

    Article  Google Scholar 

  31. Cano-Olivos, P., Hernández-Zitlalpopoca, R., Sánchez-Partida, D., Caballero-Morales, S.O., Martínez-Flores, J.L.: Risk analysis of the supply chain of a tools manufacturer in Puebla, Mexico. JCCM 27(4), 406–413 (2019)

    Google Scholar 

  32. Swarnakar, V., Tiwari, A.K., Singh, A.R.: Evaluating critical failure factors for implementing sustainable lean six sigma framework in manufacturing organization. Int. J. Lean Six Sigma 11(6), 1083–1118 (2020)

    Article  Google Scholar 

  33. Roy, R.B., Mishra, D., Pal, S.K., Chakravarty, T., Panda, S., Chandra, M.G., Misra, S.: Digital twin: current scenario and a case study on a manufacturing process. Int. J. Adv. Manuf. Technol. 107(9), 3691–3714 (2020)

    Article  Google Scholar 

  34. Gupta, N., Tiwari, A., Bukkapatnam, S.T., Karri, R.: Additive manufacturing cyber-physical system: supply chain and risks. IEEE Access 8, 47322–47333 (2020)

    Article  Google Scholar 

  35. Bhargava, C., Sharma, P.K., Senthilkumar, M., Padmanaban, S., Ramachandaramurthy, V.K., Leonowicz, Z., Mitolo, M.: Review of health prognostics and condition monitoring of electronic components. IEEE Access 8, 751633–775183 (2020)

    Article  Google Scholar 

  36. Jiang, N., Zhang, L., Liu, Z.Q., Sun, L., Long, W.M., He, P., Zhao, M.: Reliability issues of lead-free solder joints in electronic devices. Sci. Technol. Adv. Mater. 20(1), 876–901 (2019)

    Article  Google Scholar 

  37. Kumar, S., Anbanandam, R.: Impact of risk management culture on supply chain resilience: an empirical study from Indian manufacturing industry. J. Risk Res. 234(2), 246–259 (2020)

    Google Scholar 

  38. Ullah, M., Sarkar, B.: Recovery-channel selection in a hybrid manufacturing-remanufacturing production model with RFID and product quality. Int. J. Prod. Econ. 219, 360–374 (2020)

    Article  Google Scholar 

  39. Liu, H.C., Chen, X.Q., Duan, C.Y., Wang, Y.M.: Failure mode and effect analysis using multi-criteria decision making methods: a systematic literature review. Comput. Ind. Eng. 135, 881–897 (2019)

    Article  Google Scholar 

  40. Cheshmberah, M., Naderizadeh, A., Shafaghat, A., Nokabadi, M.: An integrated process model for root cause failure analysis based on reality charting, FMEA and DEMATEL. Int. J. Data Netw. Sci. 4(2), 225–236 (2020)

    Article  Google Scholar 

  41. Li, X., Han, Z., Zhang, R., Zhang, Y., Zhang, L.: Risk assessment of hydrogen generation unit considering dependencies using integrated DEMATEL and TOPSIS approach. Int. J. Hydrog. Energy 45(53), 29630–29642 (2020)

    Article  Google Scholar 

  42. Zandi, P., Rahmani, M., Khanian, M., Mosavi, A.: Agricultural risk management using fuzzy TOPSIS analytical hierarchy process (AHP) and failure mode and effects analysis (FMEA). Agriculture 10(11), 504–530 (2020)

    Article  Google Scholar 

  43. Li, Y., Zhu, L.: Risk analysis of human error in interaction design by using a hybrid approach based on FMEA, SHERPA, and fuzzy TOPSIS. Qual. Reliab. Eng. Int. 36(5), 1657–1677 (2020)

    Article  Google Scholar 

  44. Wang, L., Yan, F., Wang, F., Li, Z.: FMEA-CM based quantitative risk assessment for process industries: a case study of coal-to-methanol plant in China. Process. Saf. Environ. Prot. 149, 299–311 (2021)

    Article  Google Scholar 

  45. Akcan, S., Güldeş, M.: Methodology for risk assessment based on grey relational analysis: a case study in the automotive industry. In: 2020 4th International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), IEEE (2020), pp. 1–6.

  46. Fu, Y., Qin, Y., Wang, W., Liu, X., Jia, L.: An extended FMEA model based on cumulative prospect theory and Type-2 intuitionistic fuzzy VIKOR for the Railway Train Risk Prioritization. Entropy 22(12), 1418–1436 (2020)

    Article  MathSciNet  Google Scholar 

  47. Rathore, R., Thakkar, J.J., Jha, J.K.: Evaluation of risks in foodgrains supply chain using failure mode effect analysis and fuzzy VIKOR. Int. J. Qual. Reliab. Manag. 38(2), 551–580 (2020)

    Article  Google Scholar 

  48. Nabizadeh, M., Khalilzadeh, M., Ebrahimnejad, S., Ershadi, M.J.: Develo** a fuzzy goal programming model for health, safety and environment risks based on hybrid fuzzy FMEA-VIKOR method. J. Eng. Des. Technol. 19(2), 317–338 (2021)

    Google Scholar 

  49. Wang, Z.L., You, J.X., Liu, H.C., Wu, S.M.: Failure mode and effect analysis using soft set theory and COPRAS method. Int. J. Comput. Intell. Syst. 10(1), 1002–1015 (2017)

    Article  Google Scholar 

  50. Pancholi, N., Bhatt, M.: FMECA-based maintenance planning through COPRAS-G and PSI. J. Qual. Maint. Eng. 24(2), 224–243 (2018)

    Article  Google Scholar 

  51. Ansari, Z.N., Kant, R., Shankar, R.: Evaluation and ranking of solutions to mitigate sustainable remanufacturing supply chain risks: a hybrid fuzzy SWARA-fuzzy COPRAS framework approach. Int. J. Sustain. Eng. 13(6), 473–494 (2020)

    Article  Google Scholar 

  52. Zhou, Q., Thai, V.V.: Fuzzy and grey theories in failure mode and effect analysis for tanker equipment failure prediction. Saf. Sci. 83, 74–79 (2016)

    Article  Google Scholar 

  53. Panchal, D., Kumar, D.: Integrated framework for behaviour analysis in a process plant. J Loss Prevent Proc. 40, 147–161 (2016)

    Article  Google Scholar 

  54. Fattahi, R., Khalilzadeh, M.: Risk evaluation using a novel hybrid method based on FMEA, extended MULTIMOORA, and AHP methods under fuzzy environment. Saf. Sci. 102, 290–300 (2018)

    Article  Google Scholar 

  55. Lo, H.W., Liou, J.J., Huang, C.N., Chuang, Y.C.: A novel failure mode and effect analysis model for machine tool risk analysis. Reliab. Eng. Syst. Saf. 183, 173–183 (2019)

    Article  Google Scholar 

  56. Yanilmaz, S., Baskak, D., Yucesan, M., Gul, M.: Extension of FEMA and SMUG models with Bayesian best-worst method for disaster risk reduction. Int. J. Disaster Risk Reduct. 66, 102631 (2021)

    Article  Google Scholar 

  57. Yousefi, S., Valipour, M., Gul, M.: Systems failure analysis using Z-number theory-based combined compromise solution and full consistency method. Appl. Soft Comput. 113, 107902 (2021)

    Article  Google Scholar 

  58. Lo, H.W., Liou, J.J., Yang, J.J., Huang, C.N., Lu, Y.H.: An extended FMEA model for exploring the potential failure modes: a case study of a steam turbine for a nuclear power plant. Complexity 2021 (2021)

  59. Gul, M., Lo, H.W., Yucesan, M.: Fermatean fuzzy TOPSIS-based approach for occupational risk assessment in manufacturing. Complex Intell. Syst. 7(5), 2635–2653 (2021)

    Article  Google Scholar 

  60. Liou, J.J., Liu, P.C., Luo, S.S., Lo, H.W., Wu, Y.Z.: A hybrid model integrating FMEA and HFACS to assess the risk of inter-city bus accidents. Complex Intell. Syst. 1–20 (2022)

  61. Ak, M.F., Yucesan, M., Gul, M.: Occupational health, safety and environmental risk assessment in textile production industry through a Bayesian BWM-VIKOR approach. Stoch Environ Res Risk Assess 36(2), 629–642 (2022)

    Article  Google Scholar 

  62. Chang, K.H.: Generalized multi–attribute failure mode analysis. Neurocomputing 175, 90–100 (2016)

    Article  Google Scholar 

  63. Chai, K.C., Jong, C.H., Tay, K.M., Lim, C.P.: A perceptual computing–based method to prioritize failure modes in failure mode and effect analysis and its application to edible bird nest farming. Appl. Soft Comput. 49, 734–747 (2016)

    Article  Google Scholar 

  64. Safari, H., Faraji, Z., Majidian, S.: Identifying and evaluating enterprise architecture risks using FMEA and fuzzy VIKOR. J. Intell. Manuf. 27(2), 475–486 (2016)

    Article  Google Scholar 

  65. Ahmadi, M., Behzadian, K., Ardeshir, A., Kapelan, Z.: Comprehensive risk management using fuzzy FMEA and MCDA techniques in highway construction projects. J. Civ. Eng. Manag. 23(2), 300–310 (2017)

    Article  Google Scholar 

  66. Ahmadi, M., Molana, S.M.H., Sajadi, S.M.: A hybrid FMEA–TOPSIS method for risk management, case study: Esfahan Mobarakeh Steel Company. Int. J. Process. Manag. Benchmarking 7(3), 397–408 (2017)

    Article  Google Scholar 

  67. Chen, J.K.: Prioritization of corrective actions from utility viewpoint in FMEA application. Qual. Reliab. Eng. Int. 33(4), 883–894 (2017)

    Article  Google Scholar 

  68. Ahn, J., Noh, Y., Park, S.H., Choi, B.I., Chang, D.: Fuzzy–based failure mode and effect analysis (FMEA) of a hybrid molten carbonate fuel cell (MCFC) and gas turbine system for marine propulsion. J. Power. Sources 364, 226–233 (2017)

    Article  Google Scholar 

  69. Zhao, H., You, J.X., Liu, H.C.: Failure mode and effect analysis using MULTIMOORA method with continuous weighted entropy under interval-valued intuitionistic fuzzy environment. Soft. Comput. 21(18), 5355–5367 (2017)

    Article  Google Scholar 

  70. Mohsen, O., Fereshteh, N.: An extended VIKOR method based on entropy measure for the failure modes risk assessment: a case study of the geothermal power plant (GPP). Saf. Sci. 92, 160–172 (2017)

    Article  Google Scholar 

  71. Panchal, D., Kumar, D.: Risk analysis of compressor house unit in thermal power plant using integrated fuzzy FMEA and GRA approach. Int. J. Ind. Syst. Eng. 25(2), 228–250 (2017)

    Google Scholar 

  72. Wan, N., Li, L., Ye, C., Wang, B.: Risk assessment in intelligent manufacturing process: a case study of an optical cable automatic arranging robot. IEEE Access 7, 105892–105901 (2019)

    Article  Google Scholar 

  73. De Andrade, J.M., De Leite, A.F.C.S.M., Canciglieri, M.B., De Loures, E.F.R., Canciglieri, O.: A multi-criteria approach for FMEA in product development in industry 4.0. Adv. Transdiscipl. Eng. 12, 311–320 (2020)

  74. Gul, M., Yucesan, M., Celik, E.: A manufacturing failure mode and effect analysis based on fuzzy and probabilistic risk analysis. Appl. Soft Comput. 96, 106689 (2020)

    Article  Google Scholar 

  75. Koncz, A., Johanyák, Z.C., Pokorádi, L.: Fuzzy approaches in failure mode and effect analysis. Int. J. Artif. Intell. 19(1), 56–76 (2021)

    Google Scholar 

  76. Shafiee, M., Enjema, E., Kolios, A.: An integrated FTA-FMEA model for risk analysis of engineering systems: a case study of subsea blowout preventers. Appl. Sci. 9(6), 1192 (2019)

    Article  Google Scholar 

  77. Mandal, S., Maiti, J.: Risk analysis using FMEA: fuzzy similarity value and possibility theory based approach. Expert Syst. Appl. 41(7), 3527–3537 (2014)

    Article  Google Scholar 

  78. Zeng, Y., Li, Y.F., Li, X.Y., Huang, H.Z.: Tolerance-based reliability and optimization design of switched-mode power supply. Qual. Reliab. Eng. Int. 35(8), 2774–2784 (2019)

    Article  Google Scholar 

  79. Karamoozian, A., Wu, D.: A hybrid risk prioritization approach in construction projects using failure mode and effective analysis. Eng. Constr. Archit. Manag. 27(9), 2661–2686 (2020)

    Article  Google Scholar 

  80. Xu, K., Tang, L.C., **e, M., Ho, S.L., Zhu, M.L.: Fuzzy assessment of FMEA for engine systems. Reliab. Eng. Syst. Saf. 75(1), 17–29 (2002)

    Article  Google Scholar 

  81. Gul, M., Ak, M.F.: A modified failure modes and effects analysis using interval-valued spherical fuzzy extension of TOPSIS method: case study in a marble manufacturing facility. Soft. Comput. 25(8), 6157–6178 (2021)

    Article  Google Scholar 

  82. Lo, H.W., Shiue, W., Liou, J.J., Tzeng, G.H.: A hybrid MCDM-based FMEA model for identification of critical failure modes in manufacturing. Soft. Comput. 24(20), 15733–15745 (2020)

    Article  Google Scholar 

  83. Khatai, S., Kumar, R., Sahoo, A.K.: Hard turning assessment on EN31 steel in dry and wet cooling environments using grey-fuzzy hybrid optimization approach. Int. J. Mod. Manuf. Technol. 13(2) (2021)

  84. Khatai, S., Kumar, R., Sahoo, A.K., Panda, A.: Investigation on tool wear and chip morphology in hard turning of EN 31 steel using AlTiN-PVD coated carbide cutting tool. Mater. Today: Proc. 59, 1810–1816 (2022)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huai-Wei Lo.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interests.

Ethical approval

The authors of this article did not perform any studies with humans or animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liou, J.J.H., Liu, P.C.Y. & Lo, HW. Dependency-based FMEA model for product risk analysis: a case study of a switch mode power supply. Int J Interact Des Manuf (2024). https://doi.org/10.1007/s12008-023-01575-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12008-023-01575-3

Keywords

Navigation