Log in

Abstract

The field of 3D (three-dimensional) Printing, commonly referred to as additive manufacturing, has revolutionized the processing of biomaterials by making it feasible to construct intricate structures with high resolution and precision. A comprehensive variety of biomaterials, including polymers, hydrogels, ceramics, composites and metals, have been produced via 3D Printing. This review article provides an overview of the critical elements of 3D printing techniques for develo** and fabricating biomaterials for various biomedical applications. The article delves into the positive aspects, challenges, and prospective future directions of various 3D printing techniques, including inkjet printing, stereolithography, and fused deposition modelling, to manufacture biomaterials for use in biomedical engineering. Furthermore, it also discusses the circular economy of biomaterials and the socio-economic factors associated with 3D Printing. The review provides valuable information and insights for researchers, engineers, clinicians, and policymakers interested in or involved in the 3D printing of biomaterials for biomedical applications. We envision that 3D-printed products from biomaterials will profoundly impact the medical field in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Bandyopadhyay, A., Bose, S., Das, S.: 3D printing of biomaterials. MRS Bull. 40, 108–115 (2015)

    Article  Google Scholar 

  2. Tappa, K., Jammalamadaka, U.: Novel biomaterials used in medical 3D printing techniques. J. Funct. Biomater. 9(1), 17 (2018)

    Article  Google Scholar 

  3. Obregon, F., Vaquette, C., Ivanovski, S., Hutmacher, D.W., Bertassoni, L.E.: Three-dimensional bioprinting for regenerative dentistry and craniofacial tissue engineering. J. Dent. Res. 94, 143S-152S (2015)

    Article  Google Scholar 

  4. Dawood, A., Marti, B.M., Sauret-Jackson, V., Darwood, A.: 3D printing in dentistry. Br. Dent. J. 219, 521–529 (2015)

    Article  Google Scholar 

  5. Do, A., Khorsand, B., Geary, S.M., Salem, A.K.: 3D printing of scaffolds for tissue regeneration applications. Adv. Healthc Mater. 4, 1742–1762 (2015)

    Article  Google Scholar 

  6. Singh, D., Singh, D., Han, S.S.: 3D printing of scaffold for cells delivery: advances in skin tissue engineering. Polymers (Basel). 8, 19 (2016)

    Article  Google Scholar 

  7. Ozbolat, I.T., Yu, Y.: Bioprinting toward organ fabrication: challenges and future trends. IEEE Trans. Biomed. Eng. 60, 691–699 (2013)

    Article  Google Scholar 

  8. Mironov, V., Visconti, R.P., Kasyanov, V., Forgacs, G., Drake, C.J., Markwald, R.R.: Organ printing: tissue spheroids as building blocks. Biomaterials 30, 2164–2174 (2009)

    Article  Google Scholar 

  9. Fedorovich, N.E., Alblas, J., Hennink, W.E., Öner, F.C., Dhert, W.J.A.: Organ printing: the future of bone regeneration? Trends Biotechnol.Biotechnol. 29, 601–606 (2011)

    Article  Google Scholar 

  10. Jacobs, S., Grunert, R., Mohr, F.W., Falk, V.: 3D-Imaging of cardiac structures using 3D heart models for planning in heart surgery: a preliminary study. Interact. Cardiovasc. Thorac. Surg.Cardiovasc. Thorac. Surg. 7, 6–9 (2008)

    Article  Google Scholar 

  11. Murphy, S.V., Atala, A.: 3D bioprinting of tissues and organs. Nat. Biotechnol.Biotechnol. 32, 773–785 (2014)

    Article  Google Scholar 

  12. Chua, C.K., Leong, K.F., An, J.: Introduction to rapid prototy** of biomaterials. In: Rapid prototy** of biomaterials. pp. 1–15. Elsevier (2020)

  13. Rengier, F., Mehndiratta, A., Von Tengg-Kobligk, H., Zechmann, C.M., Unterhinninghofen, R., Kauczor, H.-U., Giesel, F.L.: 3D Printing based on imaging data: review of medical applications. Int. J. Comput. Assist. Radiol. Surg.Comput. Assist. Radiol. Surg. 5, 335–341 (2010)

    Article  Google Scholar 

  14. Mironov, V., Reis, N., Derby, B.: Bioprinting: a beginning. Tissue Eng. 12, 631–634 (2006)

    Article  Google Scholar 

  15. Kumar, P., Rajak, D.K., Abubakar, M., Ali, S.G.M., Hussain, M.: 3D printing technology for biomedical practice: a review. J. Mater. Eng. Perform. 30, 5342–5355 (2021)

    Article  Google Scholar 

  16. Zhang, L., Forgham, H., Shen, A., Wang, J., Zhu, J., Huang, X., Tang, S.-Y., Xu, C., Davis, T.P., Qiao, R.: Nanomaterial integrated 3D Printing for biomedical applications. J. Mater. Chem. B. 10, 7473–7490 (2022)

    Article  Google Scholar 

  17. Li, N., Qiao, D., Zhao, S., Lin, Q., Zhang, B., **e, F.: 3D Printing to innovate biopolymer materials for demanding applications: a review. Mater Today Chem. 20, 100459 (2021)

    Article  Google Scholar 

  18. Alizadeh-Osgouei, M., Li, Y., Wen, C.: A comprehensive review of biodegradable synthetic polymer-ceramic composites and their manufacture for biomedical applications. Bioact. Mater. 4, 22–36 (2019)

    Article  Google Scholar 

  19. Oliver, A.A., Guillory, R.J., Flom, K.L., Morath, L.M., Kolesar, T.M., Mostaed, E., Sikora-Jasinska, M., Drelich, J.W., Goldman, J.: Analysis of vascular inflammation against bioresorbable Zn–Ag-based alloys. ACS Appl. Bio Mater. 3, 6779–6789 (2020)

    Article  Google Scholar 

  20. Qiu, S., Zhou, Y., Waterhouse, G.I.N., Gong, R., **e, J., Zhang, K., Xu, J.: Optimizing interfacial adhesion in PBAT/PLA nanocomposite for biodegradable packaging films. Food Chem. 334, 127487 (2021)

    Article  Google Scholar 

  21. Giubilini, A., Bondioli, F., Messori, M., Nyström, G., Siqueira, G.: Advantages of additive manufacturing for biomedical applications of polyhydroxyalkanoates. Bioengineering 8, 29 (2021)

    Article  Google Scholar 

  22. Abbasian, M., Massoumi, B., Mohammad-Rezaei, R., Samadian, H., Jaymand, M.: Scaffolding polymeric biomaterials: are naturally occurring biological macromolecules more appropriate for tissue engineering? Int. J. Biol. Macromol.Macromol. 134, 673–694 (2019)

    Article  Google Scholar 

  23. Biswas, M.C., Jony, B., Nandy, P.K., Chowdhury, R.A., Halder, S., Kumar, D., Ramakrishna, S., Hassan, M., Ahsan, M.A., Hoque, M.E.: Recent advancement of biopolymers and their potential biomedical applications. J. Polym. Environ. 1–24 (2021)

  24. Van Wijk, A.J.M., van Wijk, I.: 3D printing with biomaterials: towards a sustainable and circular economy. IOS Press (2015)

  25. 3D Printing With Biomaterials: Towards a Sustainable and Circular Economy, by a.J.M. Van Wijk & I. Van Wijk|Circular Economy Club (CEC), https://www.circulareconomyclub.com/listings/3d-printing-with-biomaterials-towards-a-sustainable-and-circular-economy-by-a-j-m-van-wijk-i-van-wijk/

  26. Circular economy 3D printing: opportunities to improve sustainability in AM - 3D Printing Industry, https://3dprintingindustry.com/news/circular-economy-3d-printing-opportunities-to-improve-sustainability-in-am-190425/

  27. Sanchez-Rexach, E., Johnston, T.G., Jehanno, C., Sardon, H., Nelson, A.: Sustainable materials and chemical processes for additive manufacturing. Chem. Mater. 32, 7105–7119 (2020)

    Article  Google Scholar 

  28. Khalid, M.Y., Arif, Z.U.: Novel biopolymer-based sustainable composites for food packaging applications: a narrative review. Food Packag. Shelf LifePackag. Shelf Life 33, 100892 (2022)

    Article  Google Scholar 

  29. Ravichandran, R., Sundarrajan, S., Venugopal, J.R., Mukherjee, S., Ramakrishna, S.: Advances in polymeric systems for tissue engineering and biomedical applications. Macromol. Biosci.. Biosci. 12, 286–311 (2012)

    Article  Google Scholar 

  30. Amulya, K., Katakojwala, R., Ramakrishna, S., Mohan, S.V.: Low carbon biodegradable polymer matrices for sustainable future. Compos. Part C Open Access. 4, 100111 (2021)

    Article  Google Scholar 

  31. Samir, A., Ashour, F.H., Hakim, A.A.A., Bassyouni, M.: Recent advances in biodegradable polymers for sustainable applications. Npj Mater Degrad. 6, 68 (2022)

    Article  Google Scholar 

  32. Brizga, J., Hubacek, K., Feng, K.: The unintended side effects of bioplastics: carbon, land, and water footprints. One Earth. 3, 45–53 (2020)

    Article  Google Scholar 

  33. Babu, R.P., O’connor, K., Seeram, R.: Current progress on bio-based polymers and their future trends. Prog. Biomater.. Biomater. 2, 1–16 (2013)

    Google Scholar 

  34. Baptista, R., Guedes, M.: Porosity and pore design influence on fatigue behavior of 3D printed scaffolds for trabecular bone replacement. J. Mech. Behav. Biomed. Mater.Behav. Biomed. Mater. 117, 104378 (2021)

    Article  Google Scholar 

  35. Xu, X., Awad, A., Robles-Martinez, P., Gaisford, S., Goyanes, A., Basit, A.W.: Vat photopolymerization 3D printing for advanced drug delivery and medical device applications. J. Control. Release 329, 743–757 (2021)

    Article  Google Scholar 

  36. Sharma, B., Sharma, S., Jain, P.: Leveraging advances in chemistry to design biodegradable polymeric implants using chitosan and other biomaterials. Int. J. Biol. Macromol.Macromol. 169, 414–427 (2021)

    Article  Google Scholar 

  37. Brunklaus, B., Riise, E.: Bio-based materials within the circular economy: opportunities and challenges. Designing Sustainable Technologies, Products and Policies: From Science to Innovation. pp. 43–47 (2018)

  38. (PDF) Socio-Economic aspects of biotechnology|Birendra singh—Academia.edu, https://www.academia.edu/6996681/Socio_Economic_Aspects_of_Biotechnology

  39. Wojnarowska, M., Sołtysik, M., Guzik, M.: Socio-economic importance of biomaterials in the transition to the circular economy model. In: SHS web of conferences. p. 05029. EDP Sciences (2021)

  40. How to speed up the biomanufacturing revolution|World Economic Forum, https://www.weforum.org/agenda/2021/12/how-to-fuel-the-biomanufacturing-revolution/

  41. Moshood, T.D., Nawanir, G., Mahmud, F., Mohamad, F., Ahmad, M.H., AbdulGhani, A.: Biodegradable plastic applications towards sustainability: a recent innovations in the green product. Clean Eng Technol. 6, 100404 (2022)

    Article  Google Scholar 

  42. Saunders, R.E., Derby, B.: Inkjet printing biomaterials for tissue engineering: bioprinting. Int. Mater. Rev. 59, 430–448 (2014)

    Article  Google Scholar 

  43. Cui, X., Boland, T.: Human microvasculature fabrication using thermal inkjet printing technology. Biomaterials 30, 6221–6227 (2009)

    Article  Google Scholar 

  44. Ibrahim, M., Otsubo, T., Narahara, H., Koresawa, H., Suzuki, H.: Inkjet printing resolution study for multi-material rapid prototy**. JSME Int. J. Ser. C 49, 353–360 (2006)

    Article  Google Scholar 

  45. Dudman, J.P.R., Ferreira, A.M., Gentile, P., Wang, X., Ribeiro, R.D.C., Benning, M., Dalgarno, K.W.: Reliable inkjet printing of chondrocytes and MSCs using reservoir agitation. Biofabrication 12, 045024 (2020)

    Article  Google Scholar 

  46. Calvert, P.: Inkjet printing for materials and devices. Chem. Mater. 13, 3299–3305 (2001)

    Article  Google Scholar 

  47. The 3D Inkjet Printing Process Explained, https://www.nano-di.com/resources/blog/2019-the-3d-inkjet-printing-process-explained

  48. Lai, J., Wang, C., Wang, M.: 3D printing in biomedical engineering: processes, materials, and applications. Appl. Phys. Rev. 8 (2021)

  49. Ozbolat, I.T., Hospodiuk, M.: Current advances and future perspectives in extrusion-based bioprinting. Biomaterials 76, 321–343 (2016)

    Article  Google Scholar 

  50. Chung, J.H.Y., Naficy, S., Yue, Z., Kapsa, R., Quigley, A., Moulton, S.E., Wallace, G.G.: Bio-ink properties and printability for extrusion printing living cells. Biomater Sci. 1, 763–773 (2013)

    Article  Google Scholar 

  51. Panwar, A., Tan, L.P.: Current status of bioinks for micro-extrusion-based 3D bioprinting. Molecules 21, 685 (2016)

    Article  Google Scholar 

  52. Jacobs, P.F.: Rapid prototy** and manufacturing: fundamentals of stereolithography. Society of Manufacturing Engineers (1992)

  53. Melchels, F.P.W., Feijen, J., Grijpma, D.W.: A review on stereolithography and its applications in biomedical engineering. Biomaterials 31, 6121–6130 (2010)

    Article  Google Scholar 

  54. Anandakrishnan, N., Ye, H., Guo, Z., Chen, Z., Mentkowski, K.I., Lang, J.K., Rajabian, N., Andreadis, S.T., Ma, Z., Spernyak, J.A.: Fast stereolithography printing of large-scale biocompatible hydrogel models. Adv Healthc Mater. 10, 2002103 (2021)

    Article  Google Scholar 

  55. Duan, B., Wang, M.: Selective laser sintering and its application in biomedical engineering. MRS Bull. 36, 998–1005 (2011)

    Article  Google Scholar 

  56. Duan, B., Wang, M.: Selective laser sintering and its biomedical applications. pp. 83–109 (2013). https://doi.org/10.1007/978-3-642-41341-4_4

  57. Deckers, J., Shahzad, K., Vleugels, J., Kruth, J.P.: Isostatic pressing assisted indirect selective laser sintering of alumina components. Rapid Prototyp. J. 18(5), 409–419 (2012)

    Article  Google Scholar 

  58. Mazzoli, A.: Selective laser sintering in biomedical engineering. Med. Biol. Eng. Comput.Comput. 51, 245–256 (2013)

    Article  Google Scholar 

  59. Williams, D.F.: On the nature of biomaterials. Biomaterials 30, 5897–5909 (2009)

    Article  Google Scholar 

  60. Williams, D.: The continuing evolution of biomaterials, (2011)

  61. Devine, D.M.: Polymer-based additive manufacturing. Biomed. Appl. (2019)

  62. Ziolkowska, P.S., Labowska, M.B., Detyna, J., Michalak, I., Gruber, P.: A review of fabrication polymer scaffolds for biomedical applications using additive manufacturing techniques. Biocybern. Biomed. Eng. 40, 624–638 (2020)

    Article  Google Scholar 

  63. Gebhardt, A.: Understanding additive manufacturing. (2011)

  64. Liu, F., Wang, X.: Synthetic polymers for organ 3D printing. Polymers (Basel) 12, 1765 (2020)

    Article  Google Scholar 

  65. Serra, T., Mateos-Timoneda, M.A., Planell, J.A., Navarro, M.: 3D printed PLA-based scaffolds: a versatile tool in regenerative medicine. Organogenesis 9, 239–244 (2013)

    Article  Google Scholar 

  66. Garlotta, D.: A literature review of poly (lactic acid). J. Polym. Environ.Polym. Environ. 9, 63–84 (2001)

    Article  Google Scholar 

  67. Schiller, C., Epple, M.: Carbonated calcium phosphates are suitable pH-stabilising fillers for biodegradable polyesters. Biomaterials 24, 2037–2043 (2003)

    Article  Google Scholar 

  68. Melchels, F.P.W., Feijen, J., Grijpma, D.W.: A poly(d, l-lactide) resin for the preparation of tissue engineering scaffolds by stereolithography. Biomaterials 30, 3801–3809 (2009). https://doi.org/10.1016/J.BIOMATERIALS.2009.03.055

    Article  Google Scholar 

  69. Jansen, J., Melchels, F.P.W., Grijpma, D.W., Feijen, J.: Fumaric acid monoethyl ester-functionalized poly(D, L-Lactide)/N-vinyl-2- pyrrolidone resins for the preparation of tissue engineering scaffolds by stereolithography. Biomacromol 10, 214–220 (2009). https://doi.org/10.1021/BM801001R/SUPPL_FILE/BM801001R_SI_001.PDF

    Article  Google Scholar 

  70. Woodruff, M.A., Hutmacher, D.W.: The return of a forgotten polymer—polycaprolactone in the 21st century. Prog. Polym. Sci.. Polym. Sci. 35, 1217–1256 (2010). https://doi.org/10.1016/J.PROGPOLYMSCI.2010.04.002

    Article  Google Scholar 

  71. Williams, J.M., Adewunmi, A., Schek, R.M., Flanagan, C.L., Krebsbach, P.H., Feinberg, S.E., Hollister, S.J., Das, S.: Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Biomaterials 26, 4817–4827 (2005). https://doi.org/10.1016/J.BIOMATERIALS.2004.11.057

    Article  Google Scholar 

  72. Childers, E.P., Wang, M.O., Becker, M.L., Fisher, J.P., Dean, D.: 3D printing of resorbable poly(propylene fumarate) tissue engineering scaffolds. MRS Bull. 40, 119–126 (2015). https://doi.org/10.1557/MRS.2015.2

    Article  Google Scholar 

  73. Fisher, J.P., Dean, D., Mikos, A.G.: Photocrosslinking characteristics and mechanical properties of diethyl fumarate/poly(propylene fumarate) biomaterials. Biomaterials 23, 4333–4343 (2002). https://doi.org/10.1016/S0142-9612(02)00178-3

    Article  Google Scholar 

  74. Parthasarathy, J.: 3D modeling, custom implants and its future perspectives in craniofacial surgery. Ann. Maxillofac. Surg. 4, 9 (2014). https://doi.org/10.4103/2231-0746.133065

    Article  Google Scholar 

  75. Schmidt, M., Pohle, D., Rechtenwald, T.: Selective laser sintering of PEEK. CIRP Ann. 56, 205–208 (2007). https://doi.org/10.1016/J.CIRP.2007.05.097

    Article  Google Scholar 

  76. Kurtz, S.M.: Chemical and radiation stability of PEEK. PEEK Biomater. Handb. (2012). https://doi.org/10.1016/B978-1-4377-4463-7.10006-5

    Article  Google Scholar 

  77. Tellis, B.C., Szivek, J.A., Bliss, C.L., Margolis, D.S., Vaidyanathan, R.K., Calvert, P.: Trabecular scaffolds created using micro CT guided fused deposition modeling. Mater. Sci. Eng. C 28, 171–178 (2008). https://doi.org/10.1016/J.MSEC.2006.11.010

    Article  Google Scholar 

  78. Szivek, J.A., Bliss, C.L., Geffre, C., Margolis, D.S., DeYoung, D.W., Ruth, J.T., Schnepp, A.B., Tellis, B., Vaidyanathan, R.K.: 213 porous polybutylene terephthalate implants allow for bone ingrowth and provide a well-anchored scaffold that can be used to deliver tissue-engineered cartilage. J. Investig. Med.Investig. Med. 54, S116–S116 (2006). https://doi.org/10.2310/6650.2005.X0004.212

    Article  Google Scholar 

  79. Radder, A.M., Leenders, H., van Blitterswijk, C.A.: Bone-bonding behaviour of poly(ethylene oxide)-polybutylene terephthalate copolymer coatings and bulk implants: a comparative study. Biomaterials 16, 507–513 (1995). https://doi.org/10.1016/0142-9612(95)91122-F

    Article  Google Scholar 

  80. Rosenzweig, D.H., Carelli, E., Steffen, T., Jarzem, P., Haglund, L.: 3D-printed ABS and PLA scaffolds for cartilage and nucleus pulposus tissue regeneration. Int. J. Mol. Sci. 16, 15118–15135 (2015). https://doi.org/10.3390/IJMS160715118

    Article  Google Scholar 

  81. Buwalda, S.J., Boere, K.W.M., Dijkstra, P.J., Feijen, J., Vermonden, T., Hennink, W.E.: Hydrogels in a historical perspective: from simple networks to smart materials. J. Control. Release 190, 254–273 (2014). https://doi.org/10.1016/J.JCONREL.2014.03.052

    Article  Google Scholar 

  82. DeForest, C.A., Anseth, K.S.: Advances in bioactive hydrogels to probe and direct cell fate. Ann. Rev. Chem. Biomol. Eng. 3, 421–444 (2012). https://doi.org/10.1146/annurev-chembioeng-062011-080945

    Article  Google Scholar 

  83. Guvendiren, M., Burdick, J.A.: Engineering synthetic hydrogel microenvironments to instruct stem cells. Curr. Opin. Biotechnol.. Opin. Biotechnol. 24, 841–846 (2013). https://doi.org/10.1016/J.COPBIO.2013.03.009

    Article  Google Scholar 

  84. Seliktar, D.: Designing cell-compatible hydrogels for biomedical applications. Science 1979(336), 1124–1128 (2012). https://doi.org/10.1126/SCIENCE.1214804

    Article  Google Scholar 

  85. Guvendiren, M., Lu, H.D., Burdick, J.A.: Shear-thinning hydrogels for biomedical applications. Soft Matter 8, 260–272 (2011). https://doi.org/10.1039/C1SM06513K

    Article  Google Scholar 

  86. Stanton, M.M., Samitier, J., Sánchez, S.: Bioprinting of 3D hydrogels. Lab Chip 15, 3111–3115 (2015). https://doi.org/10.1039/C5LC90069G

    Article  Google Scholar 

  87. Pereira, R.F., Bártolo, P.J.: 3D bioprinting of photocrosslinkable hydrogel constructs. J. Appl. Polym. Sci.Appl Polym Sci (2015). https://doi.org/10.1002/APP.42458

    Article  Google Scholar 

  88. Billiet, T., Vandenhaute, M., Schelfhout, J., Van Vlierberghe, S., Dubruel, P.: A review of trends and limitations in hydrogel-rapid prototy** for tissue engineering. Biomaterials 33, 6020–6041 (2012). https://doi.org/10.1016/J.BIOMATERIALS.2012.04.050

    Article  Google Scholar 

  89. Zafar, M.J., Zhu, D., Zhang, Z.: 3D printing of bioceramics for bone tissue engineering. Materials 12, 3361 (2019). https://doi.org/10.3390/MA12203361

    Article  Google Scholar 

  90. Punj, S., Singh, J., Singh, K.: Ceramic biomaterials: properties, state of the art and future prospectives. Ceram. Int. 47, 28059–28074 (2021). https://doi.org/10.1016/J.CERAMINT.2021.06.238

    Article  Google Scholar 

  91. Du, X., Fu, S., Zhu, Y.: 3D Printing of ceramic-based scaffolds for bone tissue engineering: an overview. J Mater Chem B. 6, 4397–4412 (2018). https://doi.org/10.1039/C8TB00677F

    Article  Google Scholar 

  92. Seitz, H., Rieder, W., Irsen, S., Leukers, B., Tille, C.: Three-dimensional printing of porous ceramic scaffolds for bone tissue engineering. J. Biomed. Mater. Res. B Appl. Biomater.Biomater. 74B, 782–788 (2005). https://doi.org/10.1002/JBM.B.30291

    Article  Google Scholar 

  93. Bellini, A., Shor, L., Guceri, S.I.: New developments in fused deposition modeling of ceramics. Rapid Prototyp J. 11, 214–220 (2005). https://doi.org/10.1108/13552540510612901/FULL/XML

    Article  Google Scholar 

  94. Serra, T., Planell, J.A., Navarro, M.: High-resolution PLA-based composite scaffolds via 3-D printing technology. Acta Biomater. Biomater. 9, 5521–5530 (2013). https://doi.org/10.1016/J.ACTBIO.2012.10.041

    Article  Google Scholar 

  95. Tan, K.H., Chua, C.K., Leong, K.F., Cheah, C.M., Cheang, P., Abu Bakar, M.S., Cha, S.W.: Scaffold development using selective laser sintering of polyetheretherketone–hydroxyapatite biocomposite blends. Biomaterials 24, 3115–3123 (2003). https://doi.org/10.1016/S0142-9612(03)00131-5

    Article  Google Scholar 

  96. Luo, Y., Zhai, D., Huan, Z., Zhu, H., **a, L., Chang, J., Wu, C.: Three-dimensional printing of hollow-struts-packed bioceramic scaffolds for bone regeneration. ACS Appl. Mater. Interfaces 7, 24377–24383 (2015). https://doi.org/10.1021/ACSAMI.5B08911/SUPPL_FILE/AM5B08911_SI_001.PDF

    Article  Google Scholar 

  97. Fu, Q., Saiz, E., Tomsia, A.P.: Direct ink writing of highly porous and strong glass scaffolds for load-bearing bone defects repair and regeneration. Acta Biomater. Biomater. 7, 3547–3554 (2011). https://doi.org/10.1016/J.ACTBIO.2011.06.030

    Article  Google Scholar 

  98. Detsch, R., Schaefer, S., Deisinger, U., Ziegler, G., Seitz, H., Leukers, B.: In vitro -osteoclastic activity studies on surfaces of 3D printed calcium phosphate scaffolds. J. Biomater. Appl.Biomater. Appl. 26, 359–380 (2011). https://doi.org/10.1177/0885328210373285/SUPPL_FILE/JBA_373285_ERRATUM.PDF

    Article  Google Scholar 

  99. Cox, S.C., Thornby, J.A., Gibbons, G.J., Williams, M.A., Mallick, K.K.: 3D Printing of porous hydroxyapatite scaffolds intended for use in bone tissue engineering applications. Mater. Sci. Eng. C 47, 237–247 (2015). https://doi.org/10.1016/J.MSEC.2014.11.024

    Article  Google Scholar 

  100. Olakanmi, E.O., Cochrane, R.F., Dalgarno, K.W.: A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy powders: Processing, microstructure, and properties. Prog. Mater. Sci.. Mater. Sci. 74, 401–477 (2015). https://doi.org/10.1016/J.PMATSCI.2015.03.002

    Article  Google Scholar 

  101. Martin, J.H., Yahata, B.D., Hundley, J.M., Mayer, J.A., Schaedler, T.A., Pollock, T.M.: 3D printing of high-strength aluminium alloys. Nature 549, 365–369 (2017). https://doi.org/10.1038/nature23894

    Article  Google Scholar 

  102. Fei, Y., Xu, J., Yao, D., Zhou, J.: From semisolid metal processing to thixotropic 3D Printing of metallic alloys. Virtual Phys. Prototyp. 17(3), 489–507 (2022). https://doi.org/10.1080/17452759.2022.2045674

    Article  Google Scholar 

  103. Murr, L.E.: A metallographic review of 3D printing/additive manufacturing of metal and alloy products and components. Metall. Microstruct. Anal. 7, 103–132 (2018). https://doi.org/10.1007/S13632-018-0433-6/FIGURES/1

    Article  Google Scholar 

  104. Taheri Andani, M., Karamooz-Ravari, M.R., Mirzaeifar, R., Ni, J.: Micromechanics modeling of metallic alloys 3D printed by selective laser melting. Mater. Des. 137, 204–213 (2018). https://doi.org/10.1016/J.MATDES.2017.10.026

    Article  Google Scholar 

  105. Duda, T., Raghavan, L.V.: 3D metal printing technology. IFAC-PapersOnLine. 49, 103–110 (2016). https://doi.org/10.1016/J.IFACOL.2016.11.111

    Article  Google Scholar 

  106. Attarilar, S., Ebrahimi, M., Djavanroodi, F., Fu, Y., Wang, L., Yang, J.: 3D printing technologies in metallic implants: a thematic review on the techniques and procedures. Int J Bioprint 7, 21–46 (2021). https://doi.org/10.18063/IJB.V7I1.306

    Article  Google Scholar 

  107. Gupta, M.: Special issue: 3D printing of metals. Appl. Sci. 9, 2563 (2019). https://doi.org/10.3390/APP9122563

    Article  Google Scholar 

  108. Abraham, A.M., Venkatesan, S.: A review on application of biomaterials for medical and dental implants. Proc. Inst. Mech. Eng. Part L J. Mater. Design Appl. 237(2), 249–273 (2023)

    Google Scholar 

  109. Biomaterials, https://www.nibib.nih.gov/science-education/science-topics/biomaterials

  110. Biomaterials & Biomedical Applications - MIT School of Bioengineering Sciences & Research, https://mitbio.edu.in/biomaterials-biomedical-applications/

  111. Pignatello, R.: Advances in biomaterials science and biomedical applications. (2013)

  112. Jovic, T.H., Kungwengwe, G., Mills, A.C., Whitaker, I.S.: Plant-derived biomaterials: a review of 3D bioprinting and biomedical applications. Front. Mech. Eng. 5, 19 (2019)

    Article  Google Scholar 

  113. Rouse, J.G., Van Dyke, M.E.: A review of keratin-based biomaterials for biomedical applications. Materials 3(2), 999–1014 (2010). https://doi.org/10.3390/ma3020999

    Article  Google Scholar 

  114. Tripathi, A., Melo, J.S. (eds.): Advances in biomaterials for biomedical applications, vol 66. Springer, Singapore (2017)

    Google Scholar 

  115. Aherwar, A., Singh, A.K., Patnaik, A., Aherwar, A., Singh, A.K., Patnaik, A.: Current and future biocompatibility aspects of biomaterials for hip prosthesis. AIMS Bioeng 2016(1), 23–43 (2015). https://doi.org/10.3934/BIOENG.2016.1.23

    Article  Google Scholar 

  116. Singh, J., Kaur, T., Singh, N., Pandey, P.M.: Biological and mechanical characterization of biodegradable carbonyl iron powder/polycaprolactone composite material fabricated using three-dimensional Printing for cardiovascular stent application. Proc. Inst. Mech. Eng. H 234, 975–987 (2020). https://doi.org/10.1177/0954411920936055

    Article  Google Scholar 

  117. Singh, J., Pandey, P.M., Kaur, T., Singh, N.: A comparative analysis of solvent cast 3D printed carbonyl iron powder reinforced polycaprolactone polymeric stents for intravascular applications. J. Biomed. Mater. Res. Part B Appl. Biomater. 109(9), 1344–1359 (2021). https://doi.org/10.1002/jbm.b.34795

    Article  Google Scholar 

  118. Zhu, Y., Joralmon, D., Shan, W., Chen, Y., Rong, J., Zhao, H., **ao, S., Li, X.: 3D printing biomimetic materials and structures for biomedical applications. Biodes Manuf. 4, 405–428 (2021)

    Article  Google Scholar 

  119. Rokaya, D., Kongkiatkamon, S., Heboyan, A., Dam, V.V., Amornvit, P., Khurshid, Z., Srimaneepong, V., Zafar, M.S.: 3D-printed biomaterials in biomedical application. In: Functional biomaterials: drug delivery and biomedical applications. pp. 319–339. Springer (2022)

  120. Vinogradov, P.: 3D printing in medicine: current challenges and potential applications. 3D Printing Technology in Nanomedicine. Missouri: Elsevier Inc. 1 (2019)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Bhatti.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhatti, S.S., Singh, J. 3D printing of biomaterials for biomedical applications: a review. Int J Interact Des Manuf (2023). https://doi.org/10.1007/s12008-023-01525-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12008-023-01525-z

Keywords

Navigation