Log in

Abstract

Flexural cartridge/suspension is compliant mechanism that is used in nano precision engineering application due to its excellent advantages of providing no backlash, no friction and compact in size. These inbuilt qualities which are obtained help them to suit as a single one piece coupling that serves kinematic–mechanical behavior with small and very large deflection for variety of applications. The spiral shaped flexural cartridge is used in multiple number and multiple configurations to achieve the desired output for an application. To address the net deflection as the output (net deflection of the stack in assembled condition) it is very necessary to understand the changes which are brought in the geometrical parameters of the spiral shaped flexural cartridge/suspension. The importance geometrical parameters of spiral shape cartridge is been reported in this paper. The paper reviews the key concepts, technical advancements, identifying the most sensitive parameters of the spiral shaped flexural cartridge. This paper presents a guide to select the most appropriate parameter for the application engaged in flexural system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44
Fig. 45
Fig. 46
Fig. 47
Fig. 48
Fig. 49
Fig. 50
Fig. 51
Fig. 52
Fig. 53
Fig. 54

Similar content being viewed by others

Abbreviations

\(\mathrm{\varnothing }\) :

Involute angle

\(\uptheta \) :

Total subtended angle by the spiral

\(\frac{\uptheta }{{\uptheta }_{\mathrm{o}}}\) :

Relative sweep angle

\(\mathrm{a}\) :

Base circle radius

\(\mathrm{b}\) :

Width between the first and last layer (Pitch)

\(\mathrm{f}\) :

Arm shape factor

\(\mathrm{r}\) :

Radius of the spiral at a given angle

\(\mathrm{k}\) :

Initail staring radius

°C:

Temperature in Celcius

\(\mathrm{x}\) :

X coordinate of the point through which the spiral curve passes

\(\mathrm{y}\) :

Y coordinate of the point through which the spiral curve passes

AISI:

American Iron and Steel Institute

BeCu:

Berrylium copper

CAD:

Computer aided design

CSB:

Concentric spiral bearing

DOF:

Degree of freedom

ESB:

Eccentric spiral bearing

FELA:

Flexure-based electromagnetic linear actuator

LVDT:

Linear variable differential transformer

MICA:

Moving iron controllable actuator

Mn:

Manganese

MPa:

Mega Pascal

PRBM:

Pseudo rigid body model

\(\mathrm{R}\) :

Polar distance from the centre of the flexure,

\({\mathrm{R}}_{\mathrm{i}}\) :

Inner radius,

\({\mathrm{R}}_{\mathrm{o}}\) :

Outer radius,

Ti:

Titanium

References

  1. Howell, L.L.: Introduction to compliant mechanisms. In: Handb. Compliant Mech., pp. 1–13 (2013). https://doi.org/10.1002/9781118516485.ch1

  2. Shinde, S.M., Lekurwale, R.: Experimental and numerical investigation of difference in diameter enlargement and circularity of micro-holes drilled by flexural spindle head. J. Micromanufacturing 3(2), 21–41 (2020). https://doi.org/10.1177/2516598420964049

    Article  Google Scholar 

  3. Shinde, S.M., Lekurwale, R.: Design and development of three leg spiral curve flexural cartridge for micro drilling spindle head : a novel mechanism. Int. J. Mechatronics Manuf. Syst. 14(1), 55–82 (2021). https://doi.org/10.1504/IJMMS.2021.115463

    Article  Google Scholar 

  4. Bhole, K., Sonavane, V.: Parameter based method for three arm spiral shaped flexural bearing. In: Materials Today: Proceedings, vol. 5, no. 9, pp. 19380–19390 (2018). https://doi.org/10.1016/j.matpr.2018.06.298

  5. Bhole, K.S., Janbandhu, M.: Design and development of double spiral shaped flexural feed stage for micro-drilling workstation. In: International Conference on Advances in Materials and Manufacturing Applications [IConAMMA 2017], vol. 5, no. 11, pp. 25468–25476 (2018). https://doi.org/10.1016/j.matpr.2018.10.352

  6. Bhole, K., Mastud, S.: Generalized design methodology for three-arm spiral cut compliant linear stage. In: Sachdeva, A., Kumar, P., Yadav, O.P., Garg, R.K., Gupta, A. (eds.) Operation Management and Systems Engineering, pp. 127–144. Springer, Singapore (2019)

    Google Scholar 

  7. Sonavane, V., Bhole, K.: Static and frequency analysis of triple stage three arm spiral shape flexural bearing using FEA. In: Materials Today: Proceedings, vol. 24, pp. 1383–1391 (2020). https://doi.org/10.1016/j.matpr.2020.04.456

  8. Gaunekar, A.S., Widdowson, G.P., Srikanth, N., Guangneng, W.: Design and development of a high precision lens focusing mechanism using flexure bearings. Precis. Eng. 29, 81–85 (2004). https://doi.org/10.1016/j.precisioneng.2004.05.005

    Article  Google Scholar 

  9. Lourdes Thomas, T., Kalpathy Venkiteswaran, V., Ananthasuresh, G.K., Misra, S.: Surgical applications of compliant mechanisms: a review. J. Mech. Robot. 13(2), 1–13 (2021). https://doi.org/10.1115/1.4049491

    Article  Google Scholar 

  10. Awtar, S., Quint, J., Ustick, J.: Experimental characterization of a large-range parallel kinematic XYZ flexure mechanism. J. Mech. Robot. 13(1), 1–13 (2021). https://doi.org/10.1115/1.4048259

    Article  Google Scholar 

  11. Chen, N., Chen, X., Wu, Y.N., Yang, C.G., Xu, L.: Spiral profile design and parameter analysis of flexure spring. Cryogenics 46, 409–419 (2006). https://doi.org/10.1016/j.cryogenics.2005.12.009

    Article  Google Scholar 

  12. Gaunekar, A.S., Giiddenhenrich, T., Heiden, C.: Finite element analysis and testing of flexure bearing elements. Cryogenics 36(5), 359–364 (1996)

    Article  Google Scholar 

  13. Longsworth, R.C.: Three-stage linear, split-stirling crycooler for 1 to 2K magnetic cold storage, California (1993).

  14. Dang, H.: Development of high efficiency pulse tube cryocoolers for spaceborne infrared applications. In: Proceedings of SPIE—The International Society for Optical Engineering (2011). https://doi.org/10.1117/12.999356

  15. He, P., Jia, F., Zheng, E., Ji, X.: A force-based method for computing radial stiffness of multi-spiral plane supporting spring. Adv. Mater. Res. 308–310, 589–595 (2011)

    Article  Google Scholar 

  16. Gandhi, P., Deshmukh, S., Ramtekkar, R., Bhole, K., Baraki, A.: ‘On-Axis’ Linear focused spot scanning microstereolithography system: optomechatronic design, analysis and development. J. Adv. Manuf. Syst. 12(1), 43–68 (2013). https://doi.org/10.1142/S0219686713500030

    Article  Google Scholar 

  17. Deshmukh, S., Gandhi, P.S.: Optomechanical scanning systems for microstereolithography (MSL): analysis and experimental verification. J. Mater. Process. Technol. 9(209), 1275–1285 (2009). https://doi.org/10.1016/j.jmatprotec.2008.03.056

    Article  Google Scholar 

  18. Gandhi, P., Bhole, K.: Characterization of ‘bulk lithography’ process for fabrication of three-dimensional microstructures. J. Micro Nano Manuf. 1(4), 1–8 (2013). https://doi.org/10.1115/1.4025461

    Article  Google Scholar 

  19. Widdowson, G.P., Gaunekar, A.S.: Linear motor driven mechanism using flexure bearings for opto- mechanical devices. US 6,813,225 B2, 2004

  20. Teo, T., Yang, G., Chen, I.: A flexure-based electromagnetic nanopositioning actuator with predictable and re-configurable open-loop positioning resolution. Precis. Eng. 40, 249–260 (2015). https://doi.org/10.1016/j.precisioneng.2014.12.006

    Article  Google Scholar 

  21. Champagne, P.: Extended travel flexure bearing and micro check valve. US 2014/0216064 A1, 2014

  22. Liu, J., Yan, W., Zhao, Y.: A micropump sucker using a piezo-driven flexible mechanism. J. Mech. Robot. 11(4), 1–14 (2019). https://doi.org/10.1115/1.4043600

    Article  Google Scholar 

  23. Gandhi, P.S., Deshmukh, S.: A 2D optomechanical focused laser spot scanner: analysis and experimental results for microstereolithography. J. MIicromechanics Microengineering 015035, 1–11 (2009). https://doi.org/10.1088/0960-1317/20/1/015035

    Article  Google Scholar 

  24. Hanipah, M.R., Mansor, S., Akramim, M.R.M., Razali, A.R.: Design and parametric characterization of flexure bearing as automotive valve spring replacement. J. Mech. Eng. Serv. 13(1), 4704–4717 (2019). https://doi.org/10.15282/jmes.13.1.2019.25.0395

    Article  Google Scholar 

  25. Jacobsen, J.O., Winder, B.G., Howell, L.L., Magleby, S.P.: Lamina emergent mechanisms and their basic elements. J. Mech. Robot. 2(1), 1–9 (2010). https://doi.org/10.1115/1.4000523

    Article  Google Scholar 

  26. Qaiser, Z., Johnson, S.: Generalized spiral spring: a bioinspired tunable stiffness mechanism for linear response with high resolution. J. Mech. Robot. (2021). https://doi.org/10.1115/1.4045654

    Article  Google Scholar 

  27. Zhou, X., Wang, D., Wang, J., Chen, S.: Precision design and control of a flexure-based roll-to-roll printing system. Precis. Eng. 45, 332–341 (2016). https://doi.org/10.1016/j.precisioneng.2016.03.010

    Article  Google Scholar 

  28. Qi, P., Liu, H., Seneviratne, L., Althoefer, K.: Design, kinematcis and prototype of a flexible robot arm with planar springs. In: Proceedings of the ASME 2015 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, pp. 1–8 (2017). https://doi.org/10.1115/DETC2015-46503

  29. Weeke, S.L., Tolou, N., Semon, G., Herder, J.L.: A monolithic force-balanced oscillator. J. Mech. Robot. 9(2), 1–8 (2017). https://doi.org/10.1115/1.4035544

    Article  Google Scholar 

  30. Belwanshi, V.: Analytical modeling to estimate the sensitivity of MEMS technology-based piezoresistive pressure sensor. J. Comput. Electron. 20(1), 668–680 (2021). https://doi.org/10.1007/s10825-020-01592-5

    Article  Google Scholar 

  31. Ul Islam, T., Gandhi, P.S.: Spontaneous fabrication of three-dimensional multiscale fractal structures using Hele-Shaw cell. J. Manuf. Sci. Eng. Trans. ASME 139(3), 1–6 (2017). https://doi.org/10.1115/1.4034624

    Article  Google Scholar 

  32. Islam, T.U., Gandhi, P.S.: Viscous fingering in multiport hele Shaw cell for controlled sha** of fluids. Sci. Rep. (2017). https://doi.org/10.1038/s41598-017-16830-3

    Article  Google Scholar 

  33. Islam, T.U., Gandhi, P.S.: Fabrication of multscale fractal-like structures by controlling fluid interface instability. Sci. Rep. (2016). https://doi.org/10.1038/srep37187

    Article  Google Scholar 

  34. Shinde, S.M., Lekurwale, R.R.: Parametric mathematical modelling and aspect ratio optimization of eccentric spiral profile flexural bearing through finite element analysis studies. SSRN Electron. J. (2018). https://doi.org/10.2139/ssrn.3101366

    Article  Google Scholar 

  35. Luo, H.P., Zhang, B., Zhou, Z.X.: A rotary flexural bearing for micro manufacturing. CIRP Ann. Manuf. Technol. 57(1), 179–182 (2008). https://doi.org/10.1016/j.cirp.2008.03.033

    Article  Google Scholar 

  36. Awtar, S., Slocum, A.H.: Constraint-based design of parallel kinematic XY flexure mechanisms. J. Mech. Des. Trans. ASME 129(8), 816–830 (2007). https://doi.org/10.1115/1.2735342

    Article  Google Scholar 

  37. Awtar, S., Shimotsu, K., Sen, S.: Elastic averaging in flexure mechanisms: a three-beam parallelogram flexure case study. J. Mech. Robot. 100, 200 (2010). https://doi.org/10.1115/1.4002204

    Article  Google Scholar 

  38. Awtar, S., Ustick, J., Sen, S.: An XYZ parallel-kinematic flexure mechanism with geometrically decoupled degrees of freedom. J. Mech. Robot. 5(1), 1–7 (2012). https://doi.org/10.1115/1.4007768

    Article  Google Scholar 

  39. Xu, Q.: Design of a large-stroke bistable mechanism for the application in constant-force micropositioning stage. J. Mech. Robot. 9(1), 1–7 (2017). https://doi.org/10.1115/1.4035220

    Article  Google Scholar 

  40. Li, S.Z., Yu, J.J., Zong, G.H., Su, H.: A compliance-based compensation approach for designing high-precision flexure mechanism. In: Proceedings of the ASME 2012 International Design Engineering Technical Conference & Computers and Information in Engineering Conference, pp. 1–9 (2018). https://doi.org/10.1115/DETC2012-71018

  41. Rane, K., Farid, M.A., Hassan, W., Strano, M.: Effect of printing parameters on mechanical properties of extrusion-based additively manufactured ceramic parts. Ceram. Int. 47(9), 12189–12198 (2021). https://doi.org/10.1016/j.ceramint.2021.01.066

    Article  Google Scholar 

  42. Awtar, S., Sen, S.: A generalized constraint model for two-dimensional beam flexures. In: Proceedings of the ASME 2009 International Design Engineering Technical Conferences & Proceedings of the ASME 2009 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference Computers and Information in En, pp. 1–14 (2009). https://doi.org/10.1115/DETC2009-87808

  43. Loussert, G., Alzingre, J.-D.: A magnetic and mechanical force model for the design of an Archimedean spiral flexure bearing for a linear direct-drive electromagnetic actuator. IEEE ASME Trans. Mechatron. 24(4), 1617–1627 (2019). https://doi.org/10.1109/tmech.2019.2918056

    Article  Google Scholar 

  44. Jia, M., Jia, R.P., Yu, J.J.: A compliance-based parameterization approach for type synthesis of flexure mechanisms. J. Mech. Robot. 7(3), 1–12 (2015). https://doi.org/10.1115/1.4028932

    Article  Google Scholar 

  45. Hongzhe, Z., Siyuan, R., Ming, L., Shuqing, Z.: Design and development of a two degree-of-freedom rotational flexure mechanism for precise unbalance measurements. J. Mech. Robot. 9(4), 1–9 (2017). https://doi.org/10.1115/1.4036610

    Article  Google Scholar 

  46. Ling, M., Howell, L.L., Cao, J., Chen, G.: Kinetostatic and dynamic modeling of flexure-based compliant mechanisms: a survey. Appl. Mech. Rev. 36(3), 151–156 (2020). https://doi.org/10.1115/1.4045679

    Article  Google Scholar 

  47. Ma, F., Chen, G.: Modeling large planar deflections of flexible beams in compliant mechanisms using chained beam-constraint-model. J. Mech. Robot. (2016). https://doi.org/10.1115/1.4031028

    Article  Google Scholar 

  48. Hoetmer, K., Woo, G., Kim, C., Herder, J.: Negative stiffness building blocks for statically balanced compliant mechanisms: design and testing. J. Mech. Robot. (2001). https://doi.org/10.1115/1.4002247

    Article  Google Scholar 

  49. Tolou, N., Henneken, V.A., Herder, J.L.: Statically balanced compliant micro mechanisms (sb-mems): concepts and simulation. In: Proceedings of the ASME 2010 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, no. PARTS A AND B, pp. 447–454 (2010). https://doi.org/10.1115/DETC2010-28406

  50. Lamers, A.J., Gallego Sánchez, J.A., Herder, J.L.: Design of a statically balanced fully compliant grasper. Mech. Mach. Theory 92, 230–239 (2015). https://doi.org/10.1016/j.mechmachtheory.2015.05.014

    Article  Google Scholar 

  51. Wang, R., Zhang, X.: A planar 3-DOF nanopositioning platform with large magnification. Precis. Eng. 46, 221–231 (2016). https://doi.org/10.1016/j.precisioneng.2016.04.016

    Article  Google Scholar 

  52. Tian, Y., Shirinzadeh, B., Zhang, D.: A flexure-based mechanism and control methodology for ultra-precision turning operation. Precis. Eng. 33(2), 160–166 (2009). https://doi.org/10.1016/j.precisioneng.2008.05.001

    Article  Google Scholar 

  53. Kang, B.H., Wen, J.T., Dagalakis, N.G., Gorman, J.J.: Analysis and design of parallel mechanisms with flexure joints. In: Proc. - IEEE Int. Conf. Robot. Autom., pp. 4097–4102 (2004). https://doi.org/10.1109/robot.2004.1308912

  54. Tolman, K.A., Merriam, E.G., Howell, L.L.: Compliant constant-force linear-motion mechanism. Mech. Mach. Theory 106, 68–79 (2016). https://doi.org/10.1016/j.mechmachtheory.2016.08.009

    Article  Google Scholar 

  55. Nahar, D.R., Sugar, T.: Aerospace engineering Arizona. In: Proceedings of the 2003 IEEE International Conference on Robotics & Automation, pp. 318–323 (2003). https://doi.org/10.1109/ROBOT.2003.1241615

  56. Guo, Z., et al.: Design and control methodology of a 3-DOF flexure-based mechanism for micro/nano-positioning. Robot. Comput. Integr. Manuf. 32, 93–105 (2015). https://doi.org/10.1016/j.rcim.2014.10.003

    Article  Google Scholar 

  57. Tian, Y., Zhang, D., Shirinzadeh, B.: Dynamic modelling of a flexure-based mechanism for ultra-precision grinding operation. Precis. Eng. 35(4), 554–565 (2011). https://doi.org/10.1016/j.precisioneng.2011.03.001

    Article  Google Scholar 

  58. Islam, T., Gandhi, P.S.: A partail compliant mechanism for precise remote-center motion. In: Machines Mechanism and Robotic.s Lecture Notes in Mechanical Engineering, pp. 705–712. Springer, Singapore (2019). https://doi.org/10.1007/978-981-10-8597-0_60

    Chapter  Google Scholar 

  59. Nikam, M.D., Shimpi, D., Bhole, K., Mastud, S.A.: Design and development of surface texture for tribological application. Key Eng. Mater. 803, 55–59 (2019)

    Article  Google Scholar 

  60. Shang, J., Tian, Y., Li, Z., Wang, F., Cai, K.: A novel voice coil motor-driven compliant micropositioning stage based on flexure mechanism. Rev. Sci. Instrum. 100, 200 (2015). https://doi.org/10.1063/1.4929867

    Article  Google Scholar 

  61. Kim, J.J., Choi, Y.M., Ahn, D., Hwang, B., Gweon, D.G., Jeong, J.: A millimeter-range flexure-based nano-positioning stage using a self-guided displacement amplification mechanism. Mech. Mach. Theory 50, 109–120 (2012). https://doi.org/10.1016/j.mechmachtheory.2011.11.012

    Article  Google Scholar 

  62. Chen, S., Ling, M., Zhang, X.: Design and experiment of a millimeter-range and high-frequency compliant mechanism with two output ports. Mech. Mach. Theory 126, 201–209 (2018). https://doi.org/10.1016/j.mechmachtheory.2018.04.003

    Article  Google Scholar 

  63. Xu, Q.: Design, testing and precision control of a novel long-stroke flexure micropositioning system. Mech. Mach. Theory 70, 209–224 (2013). https://doi.org/10.1016/j.mechmachtheory.2013.07.016

    Article  Google Scholar 

  64. Tang, H., Li, Y.: A new flexure-based Yθ nanomanipulator with nanometer-scale resolution and millimeter-scale workspace. IEEE ASME Trans. Mechatron. 20(3), 1320–1330 (2015). https://doi.org/10.1109/TMECH.2014.2342752

    Article  Google Scholar 

  65. Inagaki, K.M.I.K.: Linear motor, and linear compressor using the same. US 2004/0251748 A1, 2009

  66. Prasad, R., Achanur, M.: Shape factor optimization and parametric analysis of spiral arm flexure bearing through finite element analysis studies. Int. J. Eng. Res. Technol. 3(4), 585–588 (2014)

    Google Scholar 

  67. Khot, M., Gawali, B.: Finite element analysis and optimization of flexure bearing for linear motor compressor. Phys. Procedia 67, 379–385 (2015). https://doi.org/10.1016/j.phpro.2015.06.044

    Article  Google Scholar 

  68. Toyama, T., Yasukawa, K., Ohshima, Y., Kamoshita, K., Takeuchi, T.: Development of the compressor for miniature pulse tube cryocooler (2002). Available: https://docs.lib.purdue.edu/icec/1610/

  69. Penswick, L.B., Lewis, D.C., Olan, R.W., Ross, B.: Flexure bearing support assemblies, with particular application to stirling machines. US005920133A, 1999

  70. Meymian, N.Z., Clark, N.N., Musho, T., Darzi, M., Johnson, D., Famouri, P.: An optimization method for flexural bearing design for high-stroke high-frequency applications. Cryogenics 95, 82–94 (2018). https://doi.org/10.1016/j.cryogenics.2018.09.008

    Article  Google Scholar 

  71. Ru, C., Liu, X., Sun, Y.: Nanopositioning technologies: Fundamentals and applications. In: Nanopositioning Technologies: Fundamentals and Applications. Springer International Publishing Switzerland, Callaghan, pp. 1–409 (2015). https://doi.org/10.1007/978-3-319-23853-1

  72. Paros, J.: How to design flexure hinge, pp. 151–156 (1965)

  73. Saxena, A., Kramer, S.N.: A simple and accurate method for determining large deflections in complaint mechanisms subjected to end forces and moments. In: Proc. ASME Des. Eng. Tech. Conf., 1B-1998, pp. 392–400 (1998). https://doi.org/10.1115/DETC98/MECH-5883

  74. Howell, L.L., Midha, A., Norton, T.W.: Evaluation of equivalent spring stiffness for use in a pseudo-rigid-body model of large-deflection compliant mechanisms compliant. J. Mech. Des. ASME 118(March), 126–131 (1996). https://doi.org/10.1115/1.2826843

    Article  Google Scholar 

  75. Howell, L.L., Midha, A.: A method for the design of compliant mechanisms with small-length flexural pivots. J. Mech. Des. Trans. ASME 116(1), 280–290 (1994). https://doi.org/10.1115/1.2919359

    Article  Google Scholar 

  76. Midha, A., Bapat, S.G., Mavanthoor, A., Chinta, V.: Analysis of a fixed-guided compliant beam with an inflection point using the pseudo-rigid-body model concept. J. Mech. Robot. 7(3), 1–10 (2015). https://doi.org/10.1115/1.4028131

    Article  Google Scholar 

  77. Halverson, P.A., Bowden, A.E., Howell, L.L.: A pseudo-rigid-body model of the human spine to predict implant-induced changes on motion. J. Mech. Robot. 3(4), 2–8 (2011). https://doi.org/10.1115/1.4004896

    Article  Google Scholar 

  78. Zhang, D., Zhang, Z., Gao, Q., Xu, D., Liu, S.: Development of a monolithic compliant SPCA-driven micro-gripper. Mechatronics 25, 37–43 (2015). https://doi.org/10.1016/j.mechatronics.2014.11.006

    Article  Google Scholar 

  79. Zhang, W.J., Zou, J., Watson, L.G., Zhao, W., Zong, G.H., Bi, S.S.: The constant-Jacobian method for kinematics of a three-DOF planar micro-motion stage. J. Robot. Syst. 19(2), 63–72 (2002). https://doi.org/10.1002/rob.1070

    Article  MATH  Google Scholar 

  80. Wu, Y., Zhou, Z.: Design calculations for flexure hinges. Rev. Sci. Instrum. 73(8), 3101 (2002). https://doi.org/10.1063/1.1494855

    Article  Google Scholar 

  81. Lobontiu, N., Paine, J.S.N., Garcia, E., Goldfarb, M.: Design of symmetric conic-section flexure hinges based on closed-form compliance equations. Mech. Mach. Theory 37(5), 477–498 (2002). https://doi.org/10.1016/S0094-114X(02)00002-2

    Article  MATH  Google Scholar 

  82. Lobontiu, N., Paine, J.S.N., Garcia, E., Goldfarb, M.: Corner-filleted flexure hinges. J. Mech. Des. Trans. ASME 123(3), 346–352 (2001). https://doi.org/10.1115/1.1372190

    Article  Google Scholar 

  83. Smith, S.T., Badami, V.G., Dale, J.S., Xu, Y.: Elliptical flexure hinges. Rev. Sci. Instrum. 68(3), 1474–1483 (1997). https://doi.org/10.1063/1.1147635

    Article  Google Scholar 

  84. Marquardt, E., Radebaugh, R., Kittel, P.: Design equations and scaling laws for linear compressors with flexure springs. In: Cryocooler, NIST, New Mexico, pp. 1–22 (1992). Available: https://minds.wisconsin.edu/handle/1793/21624

  85. Rawlings, R.M., Miskimins, S.M.: Flexure springs applied to low-cost linear drive cryocoolers. Infrared Technol. Appl. XXVI 4130, 103–110 (2001). https://doi.org/10.1117/12.409882

    Article  Google Scholar 

  86. Radebaugh, R.: Development of the pulse tube refrigerator as an efficient and reliable cryocooler. In: Institute of Refrigeration Proceedings, pp. 1–27 (2000).

  87. Meijers, M., Benschop, R.J., Mullie, J.C.: Flexure bearing cryocoolers at Thales cryogenics. In: AIP Conference Proceedings, pp. 699–706 (2002). https://doi.org/10.1063/1.1472084

  88. Simcock, C.J.: Investigation of materials for long life, high reliability flexure bearing springs for stirling cryocooler applications. In: International Cryocooler Conference, United States, pp. 335–343 (2007). Available: http://digital.library.wisc.edu/1793/21624

  89. Qi, Y., Wu, Y., Zhang, H., Chen, X.: Simulation of deformation of diaphragm spring grooved with spiral slits by FE method. In: ASME, California (2009). https://doi.org/10.1115/DETC2009-86371

  90. Malpani, S., Yenarkar, Y., Deshmukh, S., Tak, S., Bhope, D.: Design of flexure bearing for linear compressor by optimization procedure using FEA. Int. J. Eng. Sci. Technol 4(5), 1991–1999 (2012)

    Google Scholar 

  91. Kavade, M.V., Patil, C.B.: Optimization of flexure bearing using FEA for linear compressor. Int. J. Eng. Sci. 1(12), 37–45 (2012)

    Google Scholar 

  92. Girde, S., Yanarkar, Y.L.: Finite element analysis of various shapes of flexures. IOSR J. Mech. Civ. Eng. 2(5), 25–29 (2012)

    Article  Google Scholar 

  93. Zhou, W.J., Wang, L.Y., Gan, Z.H., Wang, R.Z., Qiu, L.M., Pfotenhauer, J.M.: The performance comparison of oxford and triangle flexure bearings. In: AIP Conference Proceedings, vol. 1434, no. 57, pp. 1149–1156 (2012). https://doi.org/10.1063/1.4707036

  94. Wenrui, W., Shuai, N., Jiaming, Z.: Numerical simulation on spiral flexure spring stiffness influence factor of stirling cryocooler. Inf. Technol. J. 12(15), 3219–3223 (2013). https://doi.org/10.3923/itj.2013.3219.3223

    Article  Google Scholar 

  95. Kharadi, F.H., Jadhav, M.S., Kanhurkar, S.D., Pereira, P.A., Bhojwani, V.K., Phadkule, S.: Selection of high performing geometry in flexure bearings for linear compressor applications using FEA. Int. J. Sci. Technol. Res. 4(01), 170–173 (2015)

    Google Scholar 

  96. Dang, H.: Development of high performance moving-coil linear compressors for space Stirling-type pulse tube cryocoolers. Cryogenics 68, 1–18 (2015). https://doi.org/10.1016/j.cryogenics.2015.01.009

    Article  Google Scholar 

  97. Amoedo, S., Thebaud, E., Gschwendtner, M., White, D.: Novel parameter-based flexure bearing design method. Cryogenics 76(March), 1–9 (2016). https://doi.org/10.1016/j.cryogenics.2016.03.002

    Article  Google Scholar 

  98. Awtar, S., Slocum, A.H.: Parasitic Error-free Symmetric Diaphragm Flexure, and a set of precision compliant mechanisms. Massachusetts Institute of Technology (2005)

  99. Zhang, T., **, Z., Zuo, S.: Miniature continuum manipulator with three degrees-of-freedom force sensing for retinal microsurgery. J. Mech. Robot. 13(4), 1–13 (2021). https://doi.org/10.1115/1.4049976

    Article  Google Scholar 

  100. Chen, X., Liu, Y., Zhang, H.: Finite element analysis of different flexure springs. Appl. Mech. Mater. 44–47, 2065–2069 (2011)

    Google Scholar 

  101. Ellis, M.K., Bellis, M.J., Lowell, A., Schaefer, B.R, Schaefer, R.D., Kwan, B.H.: Non rotating flexure bearing for cryoocooler and other devices. 9285073B2, 2016

  102. Zheng, E., Jia, F., Lu, C., Chen, H., Ji, X.: An energy-based method for computing radial stiffness of single Archimedes spiral plane supporting spring. In: International Conference on Artificial Intelligence and Computational Intelligence, pp. 724–733 (2009)

  103. Beckett, C.D., Lauhala, V.C., Neelly, R., Penswlck, L.B., Ritter, D.C., Nelson, R.L.: Flexure bearing support, with particular application to stirling machines. US005522214A, 1996

  104. Masuda, H., Okumura, N.: Flexure bearing. US006050556A, 2000

  105. Qiu, S., Peterson, A., Augenblick, J.: Flexure design and testing for STC stirling convertors. J. Am. Inst. Aeronaut. Astronaut. (2003). https://doi.org/10.2514/6.2003-6040

    Article  Google Scholar 

  106. Thombare, A.T.: Modeling and FEA analysis of flexural bearing for different profiles. Int. J. Eng. Trends Technol. 20(4), 2–5 (2015)

    Article  Google Scholar 

  107. Aigouy, G., et al.: Development of the plain bearing & flexure bearing MICA300CM actuator. In: ACTUATOR 2018: 16th International Conference and Exhibition on New Actuators and Drive Systems, pp. 150–153 (2018)

  108. Al-Otaibi, Z.S., Jack, A.G.: Spiral flexure springs in single phase linear-resonant motors. In: 42nd International Conference on Universities Power Engineering Conference, pp. 184–187 (2007). https://doi.org/10.1109/UPEC.2007.4468943

  109. Phakatkar, H., Sahasrabudhe, A., Lele, M.: Fatigue life analysis of spiral arm flexure bearing. J. Mater. Sci. Surf. Eng. 3(2), 211–214 (2015)

    Google Scholar 

  110. Peng, L., Wang, T.Y., Jiao, Z.X., Yan, L., Chen, C.Y.: A novel universal analytical model of flexure spring for linear oscillating motor (2015). https://doi.org/10.6567/IFToMM.14TH.WC.PS13.007

  111. Rajesh, V.R., Kuzhiveli, B.T.: Modelling and failure analysis of flexure springs for a stirling cryocooler. J. Eng. Sci. Technol. 12(4), 888–897 (2017)

    Google Scholar 

  112. Gaunekar, A.S., Widdowson, G.P.: Linear motor driven mechanism using flexure bearings for opto-mechanical devices. US 20030035349A1, 2003

  113. Surya, S.G., Dudhe, R.S., Saluru, D., Koora, B.K., Sharma, D.K., Rao, V.R.: Comparison among different algorithms in classifying explosives using OFETs. Sens. Actuators B Chem. 176, 46–51 (2013). https://doi.org/10.1016/j.snb.2012.08.076

    Article  Google Scholar 

Download references

Funding

No funds are provided for this research project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sachin Manohar Shinde.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shinde, S.M., Bhole, K. & Diwan, M. Geometrical operating parameter’s analysis used in flexural cartridges. Int J Interact Des Manuf (2023). https://doi.org/10.1007/s12008-023-01331-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12008-023-01331-7

Keywords

Navigation