Log in

Abstract

One of the defining properties of self-healing materials is their capacity to spontaneously and independently repair damage, i.e. without any intervention from an outside source. This is one of the ways in which these materials are distinguished from others. In comparison to polymers, designing and implementing a self-healing mechanism in metals is a challenging task due to the inherent high melting temperatures and low atomic diffusivities of metals. This makes it difficult to develop and execute a self-healing mechanism in metals. The materials that are frequently used in engineering, automobile, aviation, and deep ocean oil well applications are subjected to a significant amount of pressure during the manufacturing process. The forms of material damage that are typically encountered in these applications include plastic flow instability, compromise to the automobile structural integrity, fatigue, and shape deformation. As a result of this, the industry is on the hunt for composite materials that not only have a high strength but also excel in their mechanical and tribological attributes. This article gives a summary and analysis of the numerous research efforts that have been done to generate self-healing metals and the applications that can make use of them. In conclusion, we talk about a few potential directions that future studies into the self-healing characteristics of metals could take.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Ghosh, S. K.: (Ed.) Self-healing materials: fundamentals, design strategies, and applications, Wiley WCH, GmbH (2009)

  2. Van Breugel, K.: Is there a market for self-healing cement-based materials. In: Proceedings of the first international conference on self-healing materials, Noordwijkaan zee, the Netherlands (2007)

  3. Zhong, W., Yao, W.: Influence of damage degree on Self-healing of Concrete. Constr. Build. Mater. 22, 1137–1142 (2008)

    Article  Google Scholar 

  4. Walia, A.S., Srivastava, V., Garg, M., Somani, N., Gupta, N.K., Prakash, C., Bhargava, C., Kotecha, K.: Surface roughness analysis of h13 steel during electrical discharge machining process using Cu–TiC sintered electrode. Materials. 14(20), 5943 (2021)

    Article  Google Scholar 

  5. Van der Zwaag, S. (ed.): Springer, Dordrecht, The Netherlands (2007)

    Google Scholar 

  6. Wool, R.P.: Self-healing, materials: a review. Soft Matter 4, 400–418 (2008)

    Article  Google Scholar 

  7. Nosonovsky, M., Bhushan, B.: Multiscale dissipative mechanisms and hierarchical surfaces: friction, super hydrophobicity, and biomimetic. Springer-Verlag, Heidelberg, Germany (2008)

    Book  MATH  Google Scholar 

  8. Nosonovsky, M., Bhushan, B.: Thermodynamics of surface degradation, self-organization, and selfhealing for biomimetic surfaces. Phil. Trans. R. Soc. A. 367, 1607–1627 (2009)

    Article  Google Scholar 

  9. Koch, K., Bhushan, B., Ensikat, H.J., Barthlott, W.: Self-healing of voids in the wax coating on plant surfaces. Phil. Trans. R. Soc. A 367(1894), 1673–1688 (2009)

    Article  Google Scholar 

  10. Nosonovsky, M., Amano, R., Lucci, J.M., Rohatgi, P.K.: Physical chemistry of self-organization and self-healing in metals. Phys. Chem. Chem. Phys 11, 9530–9536 (2009)

    Article  Google Scholar 

  11. Wu, M., Johannesson, B., Geiker, M.: A review: Self-healing in cementitious materials and engineered cementitious composite as a self-healing material. Constr. Build. Mater. 28, 571–583 (2012)

    Article  Google Scholar 

  12. Siddique, R., Chahal, N.K.: Effect of ureolytic bacteria on concrete properties. Constr. Build. Mater. 25, 3791–3801 (2011)

    Article  Google Scholar 

  13. Jonkers, H. M.: Self-healing concrete: a biological approach, self-healing materials. An Alternative Approach to 20 Centuries of Materials Science, 195–204. (2007)

  14. Al-Thawadi, S.M.: Ureolytic bacteria and calcium carbonate formation as a mechanism of strength enhancement of sand. J. Adv. Sci. Eng. Res. 1, 98–114 (2011)

    Google Scholar 

  15. Muynck, D.W., Cox, K., Belie, N., Verstraete, W.: Bacterial carbonate precipitation as an alternative surface treatment for concrete. Constr. Build. Mater. 22, 875–885 (2008)

    Article  Google Scholar 

  16. Gollapudi, U.K., Knutson, C.L., Bang, S.S., Islam, M.R.: A new method for controlling leaching through permeable channels. Chemosphere 30, 695–705 (1995)

    Article  Google Scholar 

  17. Chahal, N., Rajor, A., Siddique, R.: Calcium carbonate precipitation by different bacterial strains. Afr. J. Biotechnol. 10, 8359–8372 (2011)

    Article  Google Scholar 

  18. Van der Zwaag, S.: Editor. Self-healing materials: an alternative approach to 20 Centuries of Material Science. (2007)

  19. Ghosh, P., Mandal, S.: Development of bioconcrete material using an enrichment culture of novel Thermopilic anaerobic bacteria. Indian J. Exp. Biol. 44, 336–339 (2006)

    Google Scholar 

  20. Toohey, K.S., Sottos, N.R., Lewis, A.L., Moore, J.S., White, S.R.: Self-healing materials with micro vascular networks. Publ. Online (2007). https://doi.org/10.1038/nmat1934

    Article  Google Scholar 

  21. Edvardsen, C.: Water permeability and autogenous healing of cracks in concrete. ACI Mater J 96, 448–454 (1999)

    Google Scholar 

  22. Schlangen, E.: Fracture mechanics. CT5146 lecture notes. In: Hua X. Self-healing of Engineered Cementitious Composites (ECC) in concrete repair system. Master thesis, Delft University of Technology (2010)

  23. Yang, Y.Z., Lepech, M.D., Yang, E.H., Li, V.C.: Autogenously healing of engineered cementitious composites under wet–dry cycles. Cem Concr Res 39, 382–390 (2007)

    Article  Google Scholar 

  24. Qian, S., Zhou, J., de Rooij, M.R., et al.: Self-healing behavior of strain hardening cementitious composites incorporating local waste materials. Cem Concr Compos 31, 613–621 (2009)

    Article  Google Scholar 

  25. Homma, D., Mihashi, H., Nishiwaki, T.: Self-healing capability of fibre reinforced cementitious composites. J Adv Concr Technol 7, 217–228 (2009)

    Article  Google Scholar 

  26. Neville, A.: Autogenously Healing Concrete Miracle. Concr. Int. 24(11), 76–82 (2002)

    Google Scholar 

  27. Talaiekhozan, A.: A review of self-healing concrete research development. J. Environ. Treat. Tech. 2(1), 1–11 (2014)

    Google Scholar 

  28. White, S.R., Sottos, N.R., Geubelle, P.H., Moore, J.S., Kessler, M.R., Sriram, S.R., et al.: Autonomic healing of polymer composites. Nature 409(6822), 794 (2001)

    Article  Google Scholar 

  29. Blaiszik, B.J., Sottos, N.R., White, S.R.: Nano capsules for self-healing materials. Compos. Sci. Technol. 68(3–4), 978–986 (2008)

    Article  Google Scholar 

  30. Blaiszik, B.J., et al.: Microcapsules filled with reactive solutions for self-healing materials. Polymer 50(4), 990–997 (2009)

    Article  Google Scholar 

  31. Anderson, H.M., Keller, M.W., Moore, J.S., Sottos, H.R., White, S.R.: Self-healing polymers and composites. In: van der Zwaag, S. (ed.) Self-Healing Materials – An Alternative Approach to 20 Centuries of Materials Science, pp. 19–44. Springer, Dordrecht, The Netherlands (2007)

    Google Scholar 

  32. Jones, A.S., Rule, J.D., Moore, J.S., White, S.R., Sottos, N.R.: Catalyst morphology and dissolution kinetics of self-healing polymers. Chem. Mater. 18(5), 1312–1317 (2006)

    Article  Google Scholar 

  33. Zhang, M.Q., Rong, M.Z., Yin, T.: Self-healing polymers and polymer composites. In: Ghosh, S.K. (ed.) Self-healing Materials: Fundamentals, Design Strategies, and Applications, pp. 29–72. Wiley WCH, Weinheim (2009)

    Google Scholar 

  34. Keller, M.W., White, S.R., Sottos, N.R.: A self-healing poly (dimethyl siloxane) elastomer. Adv. Func. Mater. 17(14), 2399–2404 (2007)

    Article  Google Scholar 

  35. Trask, R.S., Bond, I.P.: Biomimetic self-healing of advanced composite structures using hollow glass fibers. Smart Mater. Struct. 15(3), 704–710 (2006)

    Article  Google Scholar 

  36. Blaiszik, B.J., Kramer, S.L.B., Olugebefola, S.C., Moore, J.S., Sottos, N.R., White, S.R.: Self-healing polymers and composites. Annu. Rev. Mater. Res. 40, 179–211 (2010)

    Article  Google Scholar 

  37. Wilson, G.O., Moore, J.S., White, S.R., Sottos, N.R., Andersson, H.M.: Autonomic healing of epoxy vinyl esters via ring opening metathesis polymerization. Adv. Funct. Mater. 18(1), 44–52 (2008)

    Article  Google Scholar 

  38. Rule, J.D., Sottos, N.R., White, S.R.: Effect of microcapsule size on the performance of self-healing polymers. Polymer 48(12), 3520–3529 (2007)

    Article  Google Scholar 

  39. **, H., Mangun, C.L., Stradley, D.S., Moore, J.S., Sottos, N.R., White, S.R.: Self-healing thermoset using encapsulated epoxy-amine healing chemistry. Polymer 53(2), 581–587 (2012)

    Article  Google Scholar 

  40. Williams, G., Trask, R., Bond, I.: A self-healing carbon fiber reinforced polymer for aerospace applications. Compos. A Appl. Sci. Manuf. 38(6), 1525–1532 (2007)

    Article  Google Scholar 

  41. Toohey, K.S., Sottos, N.R., Lewis, J.A., Moore, J.S., White, S.R.: Self-healing materials with microvascular networks. Nat. Mater. 8, 581–585 (2007)

    Article  Google Scholar 

  42. White, S.R., et al.: Autonomic healing of polymer composites. Nature 409(6822), 794–797 (2001)

    Article  Google Scholar 

  43. Alaneme, K.K., Bodunrin, M.O.: Self-healing using metallic material systems–a review. Appl. Mater. Today. 6, 9–15 (2017)

    Article  Google Scholar 

  44. Ferguson, J. B.; and Rohtagi, P.: Self-healing metals and metal matrix composites. Minerals Metals Mater. Soc. (https://springer.longhoe.net/article/10.1007%2Fs11837-014-0912-4) (2019)

  45. Ferguson, J.B., Schultz, B.F., Rohatgi, P.K.: Self-healing metals and metal matrix composites. JOM 66, 866–871 (2014)

    Article  Google Scholar 

  46. Lumley In, R., Van Der Zwaan, S.: Self-healing materials: an alternative approach to 20 centuries of materials science Springer Ser. Mater. Sci. 100, 219–254 (2007)

    Google Scholar 

  47. Bruck, H.A., Evans, J.J., Peterson, M.L.: The role of mechanics in biological and biologically inspired materials. Exper. Mech. 42, 361–371 (2002)

    Article  Google Scholar 

  48. Lucci, J.; Rohtagi, P.: Design and demonstration of self-healing behavior in a lead-free solder alloy 7th International Energy Conversion Engineering Conference Design and demonstration of self-healing behaviour in a lead-free solder alloy. https://doi.org/10.2514/6.2009-4514 (2009)

  49. Djugum, R.; Lumely, R.N.; and Polmear, I. J.: 2nd International Conference on Self-Healing Materials (Chicago, II) (2009)

  50. He, S.M., Van Dijk, N.H., Schut, H., Peekstok, E.R., Van Der Zwaag, S.: Thermally activated precipitation at deformation-induced defects in Fe-Cu and Fe-Cu-BN alloys studied by positron annihilation spectroscopy. Phys. Rev. B. 81(9), 094103 (2010)

    Article  Google Scholar 

  51. He, S.M., Van Dijk, N.H., Paladugu, M., Schut, H., Kohlbrecher, J., Tichelaar, F.D., Van Der Zwaag, S.: In situ determination of aging precipitation in deformed Fe-Cu and Fe-Cu-BN alloys by time-resolved small-angle neutron scattering. Phys. Rev. B. 82(17), 174111 (2010)

    Article  Google Scholar 

  52. He, S.M., Brandhoff, P.N., Schut, H., van der Zwaag, S., van Dijk, N.H.: Positron annihilation study on repeated deformation/precipitation aging in Fe–Cu–B–N alloys. J. Mater. Sci. 48, 6150–6156 (2013)

    Article  Google Scholar 

  53. Shinya, N., Kyono, J., Laha, K.: Self-healing effect of boron nitride precipitation on creep cavitation in austenitic stainless steel. J. Intell. Mater. Syst. Struct. 12, 1127–1133 (2006)

    Article  Google Scholar 

  54. Laha, K., Kyono, J., Shinya, N.: An advanced creep cavitation resistance Cu-containing 18Cr–12Ni–Nb austenitic stainless steel. Scr. Mater. 56(10), 915–918 (2007)

    Article  Google Scholar 

  55. Van der Zwaag, S., Van Dijk, N.H., Jonkers, H.M., Mookhoek, S.D., Sloof, W.G.: Self-healing behaviour in man-made engineering materials: bioinspired but taking into account their intrinsic character. Philos Trans. Royal Soc. A Math. Phys. Eng. Sci. 2009(367), 1689–1704 (1894)

    Google Scholar 

  56. Lumley Nand Polmear I. J.: Advances in self-healing of metals Proc. of the First International Conference on Self-Healing Materials 18–20 April 2007) (Noordwijkaan zee, The Netherlands. (2007)

  57. Lumley, R.N., Polmear, I.J., Morton, A.J.: Interrupted ageing and secondary precipitation in aluminium alloys mater. Sci. Technol. 19, 1483–1490 (2003)

    Google Scholar 

  58. Lumley, R.N., Cairney, J.M., Ringered, S.P.: Self-healing in metals: an emerging phenomenon in metallurgy. Mater. Forum 31, 40–51 (2007)

    Google Scholar 

  59. Rohatgi, P.K., Pai, B.C., Panda, S.C.: Preparation of cast aluminium-silica particulate composites. J. Mater. Sci. 14, 2277–2283 (1979)

    Article  Google Scholar 

  60. Rohatgi, P.K., Asthana, R., Das, S.: Solidification, structures, and properties of cast metal-ceramic particle composites. Int. Met. Rev. 31, 115 (1986)

    Article  Google Scholar 

  61. Ghosh, P.K., Ray, S., Rohatgi, P.K.: Incorporation of alumina particles in aluminium-magnesium alloy by stirring in melt. Trans. Jpn. Inst. Met. 25, 440 (1984)

    Article  Google Scholar 

  62. Jha, A.K., Rohatgi, P.K.: Aluminium alloy-solid lubricant talc particle composites. J. Mater. Sci. 21, 3681 (1986)

    Article  Google Scholar 

  63. Lucci, J.M.; Amano, R.; and Rohatgi, P.K.: Proceedings of ASME Design Engineering Technical Conference 2008 DETC ASME, NY, (2008)

  64. Lucci, J.M.; Amano, R.; Rohatgi, P.K.; and Schultz, B.: Proceedings of Mechanical Congress and Exhibition, IMECE2008- 68304 (2008).

  65. Lucci, J.M.; Amano, R.; Rohatgi, P.K.; and Schultz, B.: Proceedings of Energy Nano08 ASME Turbo Expo, ENIC 2008-53011 (2008)

  66. Rohatgi, PK.; Afsanesh Dorri, M.; Schultz, B. F.; and Ferguson, J. B.: (2013) Synthesis and properties of metal matrix nano-composites (MMNCS), syntactic foams, self-lubricating and self-healing metals The Minerals, Metals & Materials Society 1515–24

  67. Lucci, J. M.; Amano, R. S.; Rohatgi, P.; and Schultz, B. F.: Experiment and computational analysis of self-healing in an aluminium alloy https://doi.org/10.1007/12_2015_337 (2016)

  68. Alaneme, K.K., Omosule, O.I.: Experimental studies of self healing behaviour of under-aged Al-Mg-Si alloys and 60Sn-40Pb alloy reinforced aluminium metal-metal composites. J. Mineral. Mater. Charact. Eng. 3(01), 1 (2014)

    Google Scholar 

  69. Oladijo, O.P., Bodunrin, M.O., Sobiyi, K., Maledi, N.B., Alaneme, K.K.: Investigating the self-healing behaviour of under-aged and 60Sn-40Pb alloy reinforced aluminium hybrid composites. Thin Solid Films 620, 201–205 (2016). https://doi.org/10.1016/j.tsf.2016.08.071

    Article  Google Scholar 

  70. Srivastava, V., Gupta, M.: Impact of post hardening mechanism on self-healing assessment of AA2014 nitinol-based smart composites. Met. Mater. Int. (2021). https://doi.org/10.1007/s12540-020-00630-y

    Article  Google Scholar 

  71. Feng, Q.L., Cui, F.Z., Pu, G., Wang, R.Z., Li, H.D.: Crystal orientation, toughening mechanisms and a mimic of nacre. Mater. Sci. Eng. C 11, 19–25 (2000)

    Article  Google Scholar 

  72. Olson, G.B., Hartman, H.: Martensite and life displace transformations as biological processes. J. De Phys. 43, 855–865 (1982)

    Google Scholar 

  73. Kanu, N.J.: Self-healing composites: a state-of-the-art review. Compos. A (2019). https://doi.org/10.1016/j.compositesa.2019.04.012

    Article  Google Scholar 

  74. Manuel, M. V.; and Olson, G. B.: Biomimetic self-healing metals Proc. of1st Int. Conf. on self-healing materials (Noordwijk aan Zee, The Netherlands) 18–20 (2007)

  75. Manuel, M.V.: Principles of self‐healing in metals and alloys: an introduction self–healing materials: fundamentals, design strategies, and applications principles of self-healing in metals and alloys: an introduction https://doi.org/10.1002/9783527625376.ch8 (2008)

  76. Rohatgi, P.K.: Al-shape memory alloy self-healing metal matrix composite. Mater. Sci. Eng. A. 619, 73–76 (2014)

    Article  Google Scholar 

  77. Ferguson, J.B., Schultz, B.F., Rohatgi, P.K.: Zinc alloy ZA-8/shape memory alloy self-healing metal matrix composite. Mater. Sci. Eng. A. 620, 85–88 (2015)

    Article  Google Scholar 

  78. Ruzek, A.; Misra, S. K.; Rohatgi, P. K.; and Amano, R.: Self-healing in metal castings, Proceedings of 2011 American Foundry Society, Schaumburg, Illinois, USA (2001)

  79. Coughlin, J.P., et al.: Interfacial reactions in model NiTi shape memory alloy fiber-reinforced sn matrix smart composites. Metall. Mater. Trans. A 40(1), 176–184 (2009)

    Article  MathSciNet  Google Scholar 

  80. Coughlin, J.P., Williams, J.J., Chawla, N.: Mechanical behavior of NiTi shape memory alloy fiber reinforced SN matrix smart composites. J. Mater. Sci. 44(3), 700–707 (2009)

    Article  Google Scholar 

  81. Srivastava, V., Gupta, M.: Impact of post hardening mechanism on self-healing assessment of AA2014 nitinol-based smart composites. Met. Mater. Int. 27, 2666–2681 (2021). https://doi.org/10.1007/s12540-020-00630-y

    Article  Google Scholar 

  82. Kang, S.-H., Lee, S., Suh, J.-Y., Kim, H.-J., Lee, Y.-K.: Self-healing behavior of Inconel 617B superalloy. J. Alloy. Compd. (2019). https://doi.org/10.1016/j.jallcom.2019.07.204

    Article  Google Scholar 

  83. Somani, N., Tyagi, Y.K., Kumar, P.: Vineet Srivastava and Hiralal Bhowmick Enhanced tribological properties of SiC reinforced copper metal matrix composites. Mater. Res. Express 6, 016549 (2019)

    Article  Google Scholar 

  84. Zhang, S., Kohlbrecher, J., Tichelaar, F.D., Langelaan, G., Brück, E., Van Der Zwaag, S., Van Dijk, N.H.: Defect-induced Au precipitation in Fe–Au and Fe–Au–B–N alloys studied by in situ small-angle neutron scattering. Acta Mater. 61(18), 7009–7019 (2013)

    Article  Google Scholar 

  85. Hautakangas, S.; Schut, H.; Van der Zwaag, S.; Del Castillo, PR.; Dand Van Dijk, NH.: The role of the ageing temperature on the self-healing kinetics in an underaged AA2024 aluminium alloy Proc. of the First Int.Conf. on Self-Healing Materials (18–20 April 2007) (Noordwijk aanZee) (2007)

  86. Ghezzoa, F.; Starrb, T. N.; Perramb, T.; Darlingtonc, T. K.; Starrb, A. F.; and Smitha, D. R.: Development of self-healing composite materials: fabrication and microstructural analyses. (2009)

  87. Michalcová, A., Marek, I., Knaislová, A., Sofer, Z., Vojtěch, D.: Phase transformation induced self-healing behavior of Al-Ag alloy. Materials. 11(2), 199 (2018)

    Article  Google Scholar 

  88. Guntur, K.; Amano, R.S.; and Lucci, J. M.: Self-healing technology for compressor and turbine blades” Proceedings of ASME Turbo Expo 2009: Power for Land, Sea and Air GT2009- 59130. (2009)

  89. Somani, N.; Tyagi, Y. K.; Kumar, P.: Review on alternative approaches to fabricate the copper based electric discharge machining (EDM) electrodes IOP Conference Series: Materials Science and Engineering 1116 012105. (2021)

  90. Bains, P.S., Sidhu, S.S., Payal, H.S.: Fabrication and machining of metal matrix composites: a review. Mater. Manuf. Process. 31(5), 553–573 (2016)

    Article  Google Scholar 

  91. Stojanovic, J.: Glisovic, Automotive engine materials. In: Hashmi, S. (ed.) Reference module in materials science and materials engineering, pp. 1–9. Elsevier, Oxford (2016)

    Google Scholar 

  92. Stojanovic, M., Babic, S., Mitrovic, A., Vencl, N., Miloradovic, M.: Pantic, Tribological characteristics of aluminium hybrid composites reinforced with silicon carbide and graphite. A Rev. J Balkan Tribol Assoc 19(1), 83–96 (2013)

    Google Scholar 

  93. Jiang, J., Wang, Y.: Microstructure and mechanical properties of the semisolid slurries and rheoformed component of nano-sized SiC/7075 aluminum matrix composite prepared by ultrasonic-assisted semisolid stirring. Mater. Sci. Eng. A. 639, 350–358 (2015)

    Article  Google Scholar 

  94. Moona, G., Walia, R.S., Rastogi, V., Sharma, R.: Aluminium metal matrix composites: a retrospective investigation. Ind. J. Pure Appl. Phys. (IJPAP) 56(2), 164–175 (2018)

    Google Scholar 

  95. Srivastava, A.: Recent advances in metal matrix composites (MMCs): a review. Biomed. J. Sci. Tech. Res. 1(2), 520–522 (2017). https://doi.org/10.26717/BJSTR.2017.01.000236

    Article  Google Scholar 

  96. Somani, N.; Tyagi, Y. K.; Kumar, P.: Effect of process parameters on machining of D2 steel using Taguchi method recent trends in industrial and production engineering. Lecture Notes in Mechanical Engineering 67–78. (2021)

  97. Alaneme, K.K., Sanusi, K.O.: Microstructural characteristics, mechanical and wear behaviour of aluminium matrix hybrid composites reinforced with alumina, rice husk ash and graphite. Eng. Sci. Technol. Int. J. 18(3), 416–422 (2015). https://doi.org/10.1016/j.jestch.2015.02.003

    Article  Google Scholar 

  98. Alaneme, K.K., Ekperusi, J.O., Oke, S.R.: Corrosion behaviour of thermal cycled aluminium hybrid composites reinforced with rice husk ash and silicon carbide. J. King Saud Univ. Eng. Sci. 30(4), 391–397 (2018). https://doi.org/10.1016/j.jksues.2016.08.001

    Article  Google Scholar 

  99. Gargatte, S., Upadhye, R.R., Dandagi, B.S.W., Venkatesh, S., Desai, S.R.: Preparation & characterization of Al-5083 alloy composites. J. Miner. Mater. Charact. Eng. 1, 8–14 (2013)

    Google Scholar 

  100. Hooker, J.A., Doorbar, P.J.: Metal matrix composites for aeroengines. Mater. Sci. Technol. 16, 725–731 (2000). https://doi.org/10.1179/026708300101508414

    Article  Google Scholar 

  101. Gupta, N.K., Kumar, M., Thakre, G.D.: The mechanical and tribological characteristics of self-healing Al6061 alloy. Mater. Res. Express. 6(8), 0865d5 (2019)

    Article  Google Scholar 

  102. Gupta, N. K.; Thakre, G.; Kumar, M.: Self-healing Al 6061 alloy reinforced with low melting point alloys https://doi.org/10.1007/978-981-13-6412-9_53. (2019)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nalin Somani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, N.K., Srivastava, V. & Somani, N. Self-healing materials: fabrication technique and applications—a critical review. Int J Interact Des Manuf (2023). https://doi.org/10.1007/s12008-023-01283-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12008-023-01283-y

Keywords

Navigation