Log in

Experimental analysis of Inconel 625 alloy to enhance the dimensional accuracy with vibration assisted micro-EDM

  • Technical Paper
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

With the continuous improvement in manufacturing processes there is an amalgamation of digital technology with traditional concepts. Electric discharge machining is one such example of it. The more industries digitalize it the more is the degree of automation. In present experimental work ZNC Electrical Discharge Machine has been used to perform the experiments. Total 18 experiments have been performed on Inconel 625 alloy as per the orthogonal array prepared by Minitab software. Tool electrode, peak current, pulse on time (Ton) and pulse of time (Toff) are considered as input parameters. There were two levels of tool and rest were assigned three levels. 9 experiments were conducted via copper tool without vibration and in remaining 9 experiments vibration assisted copper tool was used. Vibration was given to tool with coin vibration motor which was powered by battery. It was observed that when Toff was increased from 25 to 35 µs the surface roughness enhances by 23.23%. Also, it was found that circularity improves by 25.85% when Ton is raised from 140 to 160 µs. Surface roughness of each drilled hole was measured using surface roughness tester and circularity was measured using Quick Image. The FESEM and EDS has performed on the machined specimen to analyze the microstructure and chemical composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Talla, G., Gangopadhyay, S., Biswas, C.K.: Effect of powder-suspended dielectric on the EDM characteristics of Inconel 625. J. Mater. Eng. Perform. 25(2), 704–717 (2015). https://doi.org/10.1007/S11665-015-1835-0

    Article  Google Scholar 

  2. Subrahmanyam, M., Nancharaiah, T.: Optimization of process parameters in wire-cut EDM of Inconel 625 using Taguchi’s approach. Mater. Today: Proc. 23, 642–646 (2020). https://doi.org/10.1016/j.matpr.2019.05.449

    Article  Google Scholar 

  3. Mausam, K., Kumar Singh, P., Sharma, K., Gupta, R.C.: Investigation of process parameter of EDM using genetic algorithm (GA) approach for carbon fiber based two phase epoxy composites. Mater. Today: Proc. 3(10), 4102–4108 (2016). https://doi.org/10.1016/j.matpr.2016.11.081

    Article  Google Scholar 

  4. Mertiya, A.S., et al.: Development and investigation of an inexpensive low frequency vibration platform for enhancing the performance of electrical discharge machining process. Materials 14(20), 6192 (2021). https://doi.org/10.3390/ma14206192

    Article  Google Scholar 

  5. Teimouri, R., Baseri, H.: Improvement of dry EDM process characteristics using artificial soft computing methodologies. Prod. Eng. Res. Dev. 6(4–5), 493–504 (2012). https://doi.org/10.1007/s11740-012-0398-2

    Article  Google Scholar 

  6. Goyal, A., Pandey, A., Sharma, P.: Machinability of Inconel 625 aerospace material using cryogenically treated WEDM. Solid State Phenom. 266, 38–42 (2017). https://doi.org/10.4028/WWW.SCIENTIFIC.NET/SSP.266.38

    Article  Google Scholar 

  7. Goyal, A., Pandey, A., Sharma, P.: Investigation of surface roughness for Inconel 625 using wire electric discharge machining. IOP Conf. Ser. Mater. Sci. Eng. 377(1), 012109 (2018). https://doi.org/10.1088/1757-899X/377/1/012109

    Article  Google Scholar 

  8. Unune, D.R., Nirala, C.K., Mali, H.S.: Accuracy and quality of micro-holes in vibration assisted micro-electro-discharge drilling of Inconel 718. Measurement 135, 424–437 (2019). https://doi.org/10.1016/J.MEASUREMENT.2018.11.067

    Article  Google Scholar 

  9. Teimouri, R., Baseri, H.: Experimental study of rotary magnetic field-assisted dry EDM with ultrasonic vibration of workpiece. Int. J. Adv. Manuf. Technol. 67(5), 1371–1384 (2012). https://doi.org/10.1007/S00170-012-4573-6

    Article  Google Scholar 

  10. Somashekhar, K.P., Ramachandran, N., Mathew, J.: Optimization of material removal rate in micro-EDM using artificial neural network and genetic algorithms. Mater. Manuf. Process. 25(6), 467–475 (2010). https://doi.org/10.1080/10426910903365760

    Article  Google Scholar 

  11. Srivastava, V., Pandey, P.M.: Effect of process parameters on the performance of EDM process with ultrasonic assisted cryogenically cooled electrode. J. Manuf. Process. 14(3), 393–402 (2012). https://doi.org/10.1016/J.JMAPRO.2012.05.001

    Article  Google Scholar 

  12. Zhang, L., Jia, Z., Wang, F., Liu, W.: A hybrid model using supporting vector machine and multi-objective genetic algorithm for processing parameters optimization in micro-EDM. Int. J. Adv. Manuf. Technol. 51(5–8), 575–586 (2010). https://doi.org/10.1007/s00170-010-2623-5

    Article  Google Scholar 

  13. Unune, D.R., Mali, H.S.: Experimental investigation on low-frequency vibration-assisted µ-ED milling of Inconel 718. Eng. Sci. Technol. Int. J. 20(1), 222–231 (2017). https://doi.org/10.1016/j.jestch.2016.06.010

  14. Kumar, A., Kumar, V., Kumar, J.: Surface crack density and recast layer thickness analysis in WEDM process through response surface methodology. Mach. Sci. Technol. 20(2), 201–230 (2016). https://doi.org/10.1080/10910344.2016.1165835

    Article  MathSciNet  Google Scholar 

  15. Huu, P.N., et al.: Multi-objective optimization of process parameter in EDM using low-frequency vibration of workpiece assigned for SKD61. Sadhana Acad. Proc. Eng. Sci. (2019). https://doi.org/10.1007/S12046-019-1185-Y

    Article  Google Scholar 

  16. Mohanty, C.P., Mahapatra, S.S., Singh, M.R.: An intelligent approach to optimize the EDM process parameters using utility concept and QPSO algorithm. Eng. Sci. Technol. Int. J. 20(2), 552–562 (2017). https://doi.org/10.1016/j.jestch.2016.07.003

    Article  Google Scholar 

  17. Endo, T., Tsujimoto, T., Mitsui, K.: Study of vibration-assisted micro-EDM—the effect of vibration on machining time and stability of discharge. Precis. Eng. 32(4), 269–277 (2008). https://doi.org/10.1016/J.PRECISIONENG.2007.09.003

    Article  Google Scholar 

  18. Rahul, S., Datta, B., Biswal, B., Mahapatra, S.S.: A novel satisfaction function and distance-based approach for machining performance optimization during electro-discharge machining on super alloy inconel 718. Arab. J. Sci. Eng. 42(5), 1999–2020 (2017). https://doi.org/10.1007/s13369-017-2422-5

    Article  Google Scholar 

  19. Lee, P.A., Kim, Y., Kim, B.H.: Effect of low frequency vibration on micro EDM drilling. Int. J. Precis. Eng. Manuf. 16(13), 2617–2622 (2015). https://doi.org/10.1007/S12541-015-0335-3

    Article  Google Scholar 

  20. Kumar, S., Gupta, A.K., Chandna, P., Bhushan, G., Kumar, A.: A novel approach of GEF and GA for the optimization of multi-objective wire EDM process during the machining of DC53 super alloy. Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. 235(4), 1119–1131 (2021). https://doi.org/10.1177/0954408921992918

    Article  Google Scholar 

  21. Le, Q.D., Nguyen, H.P., Banh, T.L., Nguyen, D.T.: Comparative study of low-frequency vibrations assigned to a workpiece in EDM and PMEDM. Int. J. Mod. Phys. B (2020). https://doi.org/10.1142/S0217979220401451

    Article  Google Scholar 

  22. Kumaran, S.T., Ko, T.J., Kurniawan, R.: Grey fuzzy optimization of ultrasonic-assisted EDM process parameters for deburring CFRP composites. Meas. J. Int. Meas. Confed. 123, 203–212 (2018). https://doi.org/10.1016/j.measurement.2018.03.076

    Article  Google Scholar 

  23. Nguyen, H.P., Ngo, N.V., Nguyen, Q.T.: Optimizing process parameters in edm using low frequency vibration for material removal rate and surface roughness. J. King Saud Univ. Eng. Sci, 33(4), 284–291 (2021). https://doi.org/10.1016/j.jksues.2020.05.002

    Article  Google Scholar 

  24. Pandey, A., Goyal, A., Meghvanshi, R.: Experimental Investigation and optimization of machining parameters of aerospace material using taguchi’s DOE approach. Mater. Today Proc. 4(8), 7246–7251 (2017). https://doi.org/10.1016/J.MATPR.2017.07.053

    Article  Google Scholar 

  25. Prihandana, G.S., Mahardika, M., Hamdi, M., Mitsui, K.: Effect of low-frequency vibration on workpiece in EDM processes. J. Mech. Sci. Technol. 25(5), 1231–1234 (2011). https://doi.org/10.1007/S12206-011-0307-1

    Article  Google Scholar 

  26. Goyal, A.: Investigation of material removal rate and surface roughness during wire electrical discharge machining (WEDM) of Inconel 625 super alloy by cryogenic treated tool electrode. J. King Saud Univ. Sci. 29(4), 528–535 (2017). https://doi.org/10.1016/J.JKSUS.2017.06.005

    Article  Google Scholar 

  27. Tsai, M.Y., Fang, C.S., Yen, M.H.: Vibration-assisted electrical discharge machining of grooves in a titanium alloy (Ti-6A-4V). Int, J. Adv. Manuf. Technol. 97(1), 297–304 (2018). https://doi.org/10.1007/S00170-018-1904-2

    Article  Google Scholar 

  28. Bhatt, D., Goyal, A.: Multi-objective optimization of machining parameters in wire EDM for AISI-304. Mater. Today Proc. 18, 4227–4242 (2019). https://doi.org/10.1016/J.MATPR.2019.07.381

    Article  Google Scholar 

  29. Shitara, T., Fujita, K., Yan, J.: Direct observation of discharging phenomena in vibration-assisted micro-electrical discharge machining. Int. J. Adv. Manuf. Technol. 108(4), 1125–1138 (2020). https://doi.org/10.1007/S00170-019-04877-7

    Article  Google Scholar 

  30. Kumawat, A., Goyal, A., Dadhich, M., Gupta, R.: Development and optimization of triangular profile by using wire EDM machining process. Mater. Today Proc. 28, 2369–2374 (2020). https://doi.org/10.1016/J.MATPR.2020.04.645

    Article  Google Scholar 

  31. Muthu, P.: Multi objective optimization of wear behaviour of aluminum MMCs using Grey-Taguchi method. Manuf. Rev. (2020). https://doi.org/10.1051/mfreview/2020013

    Article  Google Scholar 

  32. Jung, J.H., Kwon, W.T.: Optimization of EDM process for multiple performance characteristics using Taguchi method and Grey relational analysis. J. Mech. Sci. Technol. 24,1083–1090 (2010). https://doi.org/10.1007/s12206-010-0305-8

  33. Singh, O., Kumar, G., Electronica, M.K.A, et al.: Role of taguchi and grey relational method in optimization of machining parameters of different materials: a review. Acta. Electron. Malays. 3(1), 19–22 (2019). https://doi.org/10.26480/aem.01.2019.19.22

  34. Lin, Y.C., Lee, H.S.: Optimization of machining parameters using magnetic-force-assisted EDM based on gray relational analysis. Int. J. Adv. Manuf. Technol. 42(11–12), 1052–1064 (2009). https://doi.org/10.1007/S00170-008-1662-7

    Article  Google Scholar 

  35. Palanisamy, D., Manikandan, N., Ramesh, R., Kathirvelan, M., Arulkirubakaran, D.: Machinability analysis and optimization of wire-EDM textured conventional tungsten carbide inserts in machining of 17–4 PH stainless steel. Mater. Today Proc. 1(39), 359–367 (2021)

    Article  Google Scholar 

  36. Manikandan, N., Arulkirubakaran, D., Palanisamy, D., Raju, R.: Influence of wire-EDM textured conventional tungsten carbide inserts in machining of aerospace materials (Ti–6Al–4V alloy). Mater. Manuf. Process. 34(1), 103–111 (2019)

    Article  Google Scholar 

  37. Arunbharathi, R., Varthanan, P.A., Akilesh, M., Raju, R.A., Kumar, G.A.: Experimental investigation and optimization of process parameters in WEDM on machining of H13 steel using response surface methodology. Indian J. Eng. Sci. Technol. 11(1), 39 (2017)

    Google Scholar 

  38. Kale, B.S., Bhole, K.S., Dhongadi, H., Oak, S., Deshmukh, P., Oza, A., Ramesh, R.: Effect of polygonal surfaces on development of viscous fingering in lifting plate Hele-Shaw cell. Int. J. Interact. Des. Manuf. IJIDeM (2022). https://doi.org/10.1007/s12008-022-01030-9

  39. Shinde, S.M., Lekurwale, R.R., Bhole, K.S., Oza, A.D., Patil, A.S., Ramesh, R.: 5-axis virtual machine tool centre building in PLM environment. Int. J. Interact. Des. Manuf. IJIDeM (2022). https://doi.org/10.1007/s12008-022-00974-2

  40. Gautam, N., Goyal, A., Sharma, S.S., Oza, A.D., Kumar, R.: Study of various optimization techniques for electric discharge machining and electrochemical machining processes. Mater. Today: Proc. 57, 615–621 (2022)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashish Goyal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, A.K., Singh, V., Goyal, A. et al. Experimental analysis of Inconel 625 alloy to enhance the dimensional accuracy with vibration assisted micro-EDM. Int J Interact Des Manuf (2023). https://doi.org/10.1007/s12008-023-01228-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12008-023-01228-5

Keywords

Navigation