Log in

Comparative analysis of the behavior of Bi-Directional Functionally Graded Beams: Numerical and Parametric study

  • Original Paper
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

This investigation presents a comparative accuracy and parametric study for analyzing the vibration characteristics of a bi-direction functionally graded (BDFG) beams. In this respect, two numerical techniques, harmonic differential quadrature (HDQ) and generalized differential quadrature (GDQ) method, are used to calculate the natural frequencies of the BDFG beam. Here, the material parameters are supposed to be varied continuously in the longitudinal and the thickness directions under an exponential rule. Hamilton's approach is employed to derive the equations of motion and corresponding end conditions. Four boundary conditions are taken in this study. The equations of motion are discretized using HDQ and GDQ techniques. The results obtained using HDQ and GDQ methods are compared with those obtained using the different numerical methods in the literature. Comparative analysis of the behavior of bi-Directional functionally graded beams using GDQ and HDQ is not available in the literature. The results show that HDQ and GDQ methods have good consistency. Moreover, the effects of exponent parameters, geometric parameters and boundary conditions on the natural frequency of BDFG beams are also examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ghatage, P.S., Kar, V.R., Sudhagar, P.E.: On the numerical modelling and analysis of multi-directional functionally graded composite structures: a review. Compos. Struct. 15(236), 111837 (2020)

    Article  Google Scholar 

  2. Karamanlı, A.: Free vibration analysis of two directional functionally graded beams using a third order shear deformation theory. Compos. Struct. 1(189), 127–136 (2018)

    Article  Google Scholar 

  3. Khaniki, H.B., Rajasekaran, S.: Mechanical analysis of non-uniform bi-directional functionally graded intelligent micro-beams using modified couple stress theory. Mater. Res. Exp. 5(5), 055703 (2018)

    Article  Google Scholar 

  4. Goupee, A.J., Vel, S.S.: Optimization of natural frequencies of bidirectional functionally graded beams. Struct. Multidiscip. Optim. 32(6), 473–484 (2006)

    Article  Google Scholar 

  5. Şimşek, M.: Bi-directional functionally graded materials (BDFGMs) for free and forced vibration of Timoshenko beams with various boundary conditions. Compos. Struct. 1(133), 968–978 (2015)

    Article  Google Scholar 

  6. Lezgy-Nazargah, M.: Fully coupled thermo-mechanical analysis of bi-directional FGM beams using NURBS isogeometric finite element approach. Aerosp. Sci. Technol. 1(45), 154–164 (2015)

    Article  Google Scholar 

  7. Wang, Z.H., Wang, X.H., Xu, G.D., Cheng, S., Zeng, T.: Free vibration of two-directional functionally graded beams. Compos. Struct. 1(135), 191–198 (2016)

    Article  Google Scholar 

  8. Huynh, T.A., Lieu, X.Q., Lee, J.: NURBS-based modeling of bidirectional functionally graded Timoshenko beams for free vibration problem. Compos. Struct. 15(160), 1178–1190 (2017)

    Article  Google Scholar 

  9. Rezaiee-Pajand, M., Hozhabrossadati, S.M.: Analytical and numerical method for free vibration of double-axially functionally graded beams. Compos. Struct. 15(152), 488–498 (2016)

    Article  Google Scholar 

  10. Nejad, M.Z., Hadi, A.: Non-local analysis of free vibration of bi-directional functionally graded Euler-Bernoulli nano-beams. Int. J. Eng. Sci. 1(105), 1–1 (2016)

    MathSciNet  MATH  Google Scholar 

  11. Deng, H., Cheng, W.: Dynamic characteristics analysis of bi-directional functionally graded Timoshenko beams. Compos. Struct. 1(141), 253–263 (2016)

    Article  Google Scholar 

  12. Yang, Y., Lam, C.C., Kou, K.P.: Forced vibration analysis of functionally graded beams by the meshfree boundary-domain integral equation method. Eng. Anal. Boundary Elem. 1(72), 100–110 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Pydah, A., Sabale, A.: Static analysis of bi-directional functionally graded curved beams. Compos. Struct. 15(160), 867–876 (2017)

    Article  Google Scholar 

  14. Nguyen, D.K., Nguyen, Q.H., Tran, T.T., Bui, V.T.: Vibration of bi-dimensional functionally graded Timoshenko beams excited by a moving load. Acta Mech. 228(1), 141–155 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  15. Singhal, A., Sahu, S.A., Chaudhary, S.: Liouville-Green approximation: An analytical approach to study the elastic waves vibrations in composite structure of piezo material. Compos. Struct. 15(184), 714–727 (2018)

    Article  Google Scholar 

  16. Shafiei, N., Mirjavadi, S.S., MohaselAfshari, B., Rabby, S., Kazemi, M.: Vibration of two-dimensional imperfect functionally graded (2D-FG) porous nano-/micro-beams. Comput. Methods Appl. Mech. Eng. 1(322), 615–632 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  17. Trinh, L.C., Vo, T.P., Thai, H.T., Nguyen, T.K.: Size-dependent vibration of bi-directional functionally graded microbeams with arbitrary boundary conditions. Compos. B Eng. 1(134), 225–245 (2018)

    Article  Google Scholar 

  18. Pydah, A., Batra, R.C.: Shear deformation theory using logarithmic function for thick circular beams and analytical solution for bi-directional functionally graded circular beams. Compos. Struct. 15(172), 45–60 (2017)

    Article  Google Scholar 

  19. Rajasekaran, S., Khaniki, H.B.: Free vibration analysis of bi-directional functionally graded single/multi-cracked beams. Int. J. Mech. Sci. 1(144), 341–356 (2018)

    Article  Google Scholar 

  20. Tang, Y., Lv, X., Yang, T.: Bi-directional functionally graded beams: asymmetric modes and nonlinear free vibration. Compos. B Eng. 1(156), 319–331 (2019)

    Article  Google Scholar 

  21. Nguyen, T.T., Lee, J.: Flexural-torsional vibration and buckling of thin-walled bi-directional functionally graded beams. Compos. B Eng. 1(154), 351–362 (2018)

    Article  Google Scholar 

  22. Yang, T., Tang, Y., Li, Q., Yang, X.D.: Nonlinear bending, buckling and vibration of bi-directional functionally graded nanobeams. Compos. Struct. 15(204), 313–319 (2018)

    Article  Google Scholar 

  23. Chen, X., Zhang, X., Lu, Y., Li, Y.: Static and dynamic analysis of the postbuckling of bi-directional functionally graded material microbeams. Int. J. Mech. Sci. 1(151), 424–443 (2019)

    Article  Google Scholar 

  24. Bhattacharya, S., Das, D.: Free vibration analysis of bidirectional-functionally graded and double-tapered rotating micro-beam in thermal environment using modified couple stress theory. Compos. Struct. 1(215), 471–492 (2019)

    Article  Google Scholar 

  25. Chen, X., Lu, Y., Zhu, B., Zhang, X., Li, Y.: Nonlinear resonant behaviors of bi-directional functionally graded material microbeams: one-/two-parameter bifurcation analyses. Compos. Struct. 1(223), 110896 (2019)

    Article  Google Scholar 

  26. Chen, X., Lu, Y., Li, Y.: Free vibration, buckling and dynamic stability of bi-directional FG microbeam with a variable length scale parameter embedded in elastic medium. Appl. Math. Model. 1(67), 430–448 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  27. Barati, A., Hadi, A., Nejad, M.Z., Noroozi, R.: On vibration of bi-directional functionally graded nanobeams under magnetic field. Mech. Based Des. Struct. Mach. 50(2), 468–485 (2022)

    Article  Google Scholar 

  28. Chen, W.R., Chang, H.: Vibration analysis of bidirectional functionally graded Timoshenko beams using Chebyshev collocation method. Int. J. Struct. Stab. Dyn. 21(01), 2150009 (2021)

    Article  MathSciNet  Google Scholar 

  29. Hassaine, N., Touat, N., Dahak, M., Fellah, A., Saimi, A.: Study of crack’s effect on the natural frequencies of bi-directional functionally graded beam. Mech. Based Des. Struct. Mach. 18, 1–1 (2022)

    Article  Google Scholar 

  30. Chen, X., Huang, S., Zhu, B., Wu, R., Ren, Z.: A domain decomposition method based vibration analysis of BDFGs imperfect beams with arbitrary boundary conditions. Compos. Struct. 15(284), 115115 (2022)

    Article  Google Scholar 

  31. Wang, J., Wang, Y.Q., Chai, Q.: Free vibration analysis of a spinning functionally graded spherical–cylindrical–conical shell with general boundary conditions in a thermal environment. Thin-Walled Struct. 1(180), 109768 (2022)

    Article  Google Scholar 

  32. Sharma, P., Singh, R., Hussain, M.: On modal analysis of axially functionally graded material beam under hygrothermal effect. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 234(5), 1085–1101 (2020)

    Article  Google Scholar 

  33. Singh, R., Sharma, P.: Vibration analysis of an axially functionally graded material non-prismatic beam under axial thermal variation in humid environment. J. Vib. Control 9, 107 (2021)

    Google Scholar 

  34. Gupta, B., Sharma, P., Rathore, S.K.: A new numerical modeling of an axially functionally graded piezoelectric beam. J. Vib. Eng. Technol. 13, 1–6 (2022)

    Google Scholar 

  35. Sharma, P., Gupta, B., Rathore, S.K., Khinchi, A., Gautam, M.: Computational characteristics of an exponentially functionally graded piezoelectric beam. Int. J. Interact. Des. Manuf. 31, 1–7 (2022)

    Google Scholar 

  36. Chai, Q., Wang, Y., Teng, M.: Nonlinear free vibration of spinning cylindrical shells with arbitrary boundary conditions. Appl. Math. Mech. 43(8), 1203–1218 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  37. Xu, H., Wang, Y.Q.: Differential transformation method for free vibration analysis of rotating Timoshenko beams with elastic boundary conditions. Int. J. Appl. Mech. 14(5), 2250046 (2022)

    Article  Google Scholar 

  38. **ng, W.C., Wang, Y.Q.: Vibration characteristics of thin plate system joined by hinges in double directions. Thin-Walled Struct. 1(175), 109260 (2022)

    Article  Google Scholar 

  39. Civalek, Ö.: Harmonic differential quadrature-finite differences coupled approaches for geometrically nonlinear static and dynamic analysis of rectangular plates on elastic foundation. J. Sound Vib. 294(4–5), 966–980 (2006)

    Article  Google Scholar 

  40. Sharma, P.: Efficacy of Harmonic Differential Quadrature method to vibration analysis of FGPM beam. Compos. Struct. 1(189), 107–116 (2018)

    Article  Google Scholar 

  41. Striz, A.G., Wang, X., Bert, C.W.: Harmonic differential quadrature method and applications to analysis of structural components. Acta Mech. 111(1), 85–94 (1995)

    Article  MATH  Google Scholar 

  42. Bert CW, Malik M. Differential quadrature method in computational mechanics: a review.

  43. Liew, K.M., Teo, T.M., Han, J.B.: Comparative accuracy of DQ and HDQ methods for three-dimensional vibration analysis of rectangular plates. Int. J. Numer. Meth. Eng. 45(12), 1831–1848 (1999)

    Article  MATH  Google Scholar 

  44. Parashar, S.K., Sharma, P.: Modal analysis of shear-induced flexural vibration of FGPM beam using generalized differential quadrature method. Compos. Struct. 1(139), 222–232 (2016)

    Article  Google Scholar 

  45. Sharma, P.: Vibration Analysis of Functionally Graded Piezoelectric Actuators. Springer, New York, NY (2019)

    Book  Google Scholar 

  46. Shu, C., Xue, H.: Explicit computation of weighting coefficients in the harmonic differential quadrature. J. Sound Vib. 204(3), 549–555 (1997)

    Article  Google Scholar 

  47. Bellman, R., Casti, J.: Differential quadrature and long-term integration. J. Math. Anal. Appl. 34(2), 235–238 (1971)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashish Khinchi.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest in preparing this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, P., Khinchi, A. Comparative analysis of the behavior of Bi-Directional Functionally Graded Beams: Numerical and Parametric study. Int J Interact Des Manuf (2023). https://doi.org/10.1007/s12008-022-01191-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12008-022-01191-7

Keywords

Navigation