Log in

Effect of porosity inclusions on the natural frequencies of the FGM plates using dynamic stiffness method

  • Original Paper
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

In the present article, an exact solution has been given to investigate the influence of porosity inclusion, boundary conditions, and volume fraction index on the vibration response of functionally graded material (FGM) plates using the dynamic stiffness method (DSM). The material properties of FGM are continuously changing along the thickness direction of plates according to the power law with even porosity inclusion. Classical plate theory (CPT) along with the concept of a physical neutral surface is employed to develop the governing differential equation of motion by using Hamilton's principle. The levy type (closed form) solution is used to develop the dynamic stiffness matrix. The Wittrick-Williams algorithm has been employed to compute the exact natural frequency of the FGM plates with porosity inclusion. The efficacy and authenticity of the present formulation have been ascertained by comparing the present results with those of the literature. A comprehensive parametric study has been performed to compute the influence of various geometric and boundary configurations on the vibration response of the FGM plates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Gupta, A., Talha, M.: Recent development in modeling and analysis of functionally graded materials and structures. Prog. Aerosp. Sci. 79, 1–14 (2015). https://doi.org/10.1016/j.paerosci.2015.07.001

    Article  Google Scholar 

  2. Bansal, G., Gupta, A., Katiyar, V.: Influence of geometric discontinuities and geometric/microstructural defects on the temperature-dependent vibration response of functionally graded plates on elastic foundation. J. Brazilian Soc. Mech. Sci. Eng. 42, 10 (2020). https://doi.org/10.1007/s40430-020-02619-5

    Article  Google Scholar 

  3. Gupta, A., Krishna, V., Boddu, V., Vemulapalli, P., Unnava, N., Agrawal, B.N.: Geometric/microstructural imperfection sensitivity in the vibration characteristics of geometrically non-uniform functionally graded plates with mixed boundary conditions. Mech. Based Des. Struct. Mach. (2021). https://doi.org/10.1080/15397734.2021.1886947

    Article  Google Scholar 

  4. Kumar Chaudhari, V., Gupta, A., Talha, M.: Nonlinear vibration response of shear deformable functionally graded plate using finite element method. Procedia Technol. 23, 201–208 (2016). https://doi.org/10.1016/j.protcy.2016.03.018

    Article  Google Scholar 

  5. Katiyar, V., Gupta, A.: Vibration response of a geometrically discontinuous bi-directional functionally graded plate resting on elastic foundations in thermal environment with initial imperfections. Mech. Based Des. Struct. Mach. (2021). https://doi.org/10.1080/15397734.2021.1929313

    Article  Google Scholar 

  6. Gupta, A., Talha, M.: Influence of porosity on the flexural and free vibration responses of functionally graded plates in thermal environment. Int. J. Struct. Stab. Dyn. (2018). https://doi.org/10.1142/S021945541850013X

    Article  MathSciNet  Google Scholar 

  7. Singh, D., Gupta, A.: Influence of geometric imperfections on the free vibrational response of the functionally graded material sandwich plates with circular cut-outs. Mater. Today Proc. (2022). https://doi.org/10.1016/j.matpr.2022.02.187

    Article  Google Scholar 

  8. Zhao, J., Wang, Q., Deng, X., Choe, K., Zhong, R., Shuai, C.: Free vibrations of functionally graded porous rectangular plate with uniform elastic boundary conditions. Compos. Part B Eng. 168, 106–120 (2019). https://doi.org/10.1016/j.compositesb.2018.12.044

    Article  Google Scholar 

  9. Zhu, J., Lai, Z., Yin, Z., Jeon, J., Lee, S.: Fabrication of ZrO2-NiCr functionally graded material by powder metallurgy. Mater. Chem. Phys. 68(1–3), 130–135 (2001). https://doi.org/10.1016/S0254-0584(00)00355-2

    Article  Google Scholar 

  10. Rajput, M., Gupta, A.: Microstructure/geometric imperfection sensitivity on the thermo-mechanical nonlinear stability behavior of functionally graded plates using four variable refined structural kinematics. J. Strain Anal. Eng. Des. 56(7), 500–516 (2021). https://doi.org/10.1177/0309324720972874

    Article  Google Scholar 

  11. Seifried, S., Winterer, M., Hahn, H.: Nanocrystalline gradient films through chemical vapor synthesis. Scr. Mater. 44(8–9), 2165–2168 (2001). https://doi.org/10.1016/S1359-6462(01)00898-3

    Article  Google Scholar 

  12. Leung, A.Y.T.: Dynamic stiffness and substructures. Springer (1993)

    Book  Google Scholar 

  13. Wittrick, W.H., Williams, F.W.: Buckling and vibration of anisotropic or isotropic plate assemblies under combined loadings. Int. J. Mech. Sci. 16(4), 209–239 (1974). https://doi.org/10.1016/0020-7403(74)90069-1

    Article  MATH  Google Scholar 

  14. Banerjee, J.R.: Dynamic stiffness formulation for structural elements: a general approach. Comput. Struct. 63(1), 101–103 (1997). https://doi.org/10.1016/S0045-7949(96)00326-4

    Article  MATH  Google Scholar 

  15. Boscolo, M., Banerjee, J.R.: Dynamic stiffness elements and their applications for plates using first order shear deformation theory. Comput. Struct. 89(3–4), 395–410 (2011). https://doi.org/10.1016/j.compstruc.2010.11.005

    Article  Google Scholar 

  16. Boscolo, M., Banerjee, J.R.: Dynamic stiffness method for exact inplane free vibration analysis of plates and plate assemblies. J. Sound Vib. 330(12), 2928–2936 (2011). https://doi.org/10.1016/j.jsv.2010.12.022

    Article  Google Scholar 

  17. Papkov, S.O., Banerjee, J.R.: A new method for free vibration and buckling analysis of rectangular orthotropic plates. J. Sound Vib. 339, 342–358 (2015). https://doi.org/10.1016/j.jsv.2014.11.007

    Article  Google Scholar 

  18. Kolarevic, N., Nefovska-Danilovic, M., Petronijevic, M.: Dynamic stiffness elements for free vibration analysis of rectangular Mindlin plate assemblies. J. Sound Vib. 359, 84–106 (2015). https://doi.org/10.1016/j.jsv.2015.06.031

    Article  Google Scholar 

  19. Nefovska-Danilovic, M., Kolarevic, N., Marjanović, M., Petronijevic, M.: Shear deformable dynamic stiffness elements for a free vibration analysis of composite plate assemblies – part i: theory. Compos. Struct. 159, 728–744 (2017). https://doi.org/10.1016/j.compstruct.2016.09.022

    Article  Google Scholar 

  20. Kumar, S., Ranjan, V., Jana, P.: Free vibration analysis of thin functionally graded rectangular plates using the dynamic stiffness method. Compos. Struct. 197, 39–53 (2018). https://doi.org/10.1016/j.compstruct.2018.04.085

    Article  Google Scholar 

  21. Kumar, S., Jana, P.: Application of dynamic stiffness method for accurate free vibration analysis of sigmoid and exponential functionally graded rectangular plates. Int. J. Mech. Sci. 163, 105105 (2019). https://doi.org/10.1016/j.ijmecsci.2019.105105

    Article  Google Scholar 

  22. Kumar, S., Jana, P.: Accurate solution for free vibration behaviour of stepped FGM plates implementing the dynamic stiffness method. Structures 45, 1971–1989 (2022). https://doi.org/10.1016/j.istruc.2022.10.035

    Article  Google Scholar 

  23. Jha, D.K., Kant, T., Singh, R.K.: Free vibration of functionally graded plates with a higher-order shear and normal deformation theory. Int. J. Struct. Stab. Dyn. 13(01), 1350004 (2013). https://doi.org/10.1142/S0219455413500041

    Article  MathSciNet  MATH  Google Scholar 

  24. Belabed, Z., Ahmed Houari, M.S., Tounsi, A., Mahmoud, S.R., Anwar Bég, O.: An efficient and simple higher order shear and normal deformation theory for functionally graded material (FGM) plates. Compos. Part B Eng. 60, 274–283 (2014). https://doi.org/10.1016/j.compositesb.2013.12.057

    Article  Google Scholar 

  25. Thai, H.T., Kim, S.E.: A review of theories for the modeling and analysis of functionally graded plates and shells. Compos. Struct. 128, 70 (2015). https://doi.org/10.1016/j.compstruct.2015.03.010

    Article  Google Scholar 

  26. Harrison, H.R., Nettleton, T.: “Hamilton’s principle advanced engineering dynamics. Elsevier (1997)

    Google Scholar 

  27. Leissa, A.W.: The free vibration of rectangular plates. Sound Vib. 31(3), 257–293 (1973)

    Article  MATH  Google Scholar 

  28. Uymaz, B., Aydogdu, M.: Three-dimensional vibration analyses of functionally graded plates under various boundary conditions. J. Reinf. Plast. Compos. 26(18), 1847–1863 (2007). https://doi.org/10.1177/0731684407081351

    Article  Google Scholar 

  29. Ali, M.I., Azam, M.S., Ranjan, V., Banerjee, J.R.: Free vibration of sigmoid functionally graded plates using the dynamic stiffness method and the Wittrick-Williams algorithm. Comput. Struct. (2021). https://doi.org/10.1016/J.COMPSTRUC.2020.106424

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ankit gupta.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rai, S., Kumar, S., Singh, R. et al. Effect of porosity inclusions on the natural frequencies of the FGM plates using dynamic stiffness method. Int J Interact Des Manuf 17, 2723–2730 (2023). https://doi.org/10.1007/s12008-022-01170-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12008-022-01170-y

Keywords

Navigation