Log in

CFD analysis of adsorption cooling system powered by parabolic trough collector using nanofluid under Tunisia climate

  • Original Paper
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

Energy requirements for cooling systems are growing every year, especially in regions with significant solar radiation intensity. This increase causes big electricity consumption and environmental pollution. Hence, using solar energy as a heat source instead electricity for cooling needs is considered as a promising way. In this study, a transient Computational Fluid Dynamics (CFD) simulation is carried out to investigate the performance of solar Parabolic Trough Collector (PTC) powered adsorption refrigeration system using nanofluid under a typical meteorological data of Tozeur, Sahara of Tunisia. The pure oil (Therminol-VP1) and Copper/Therminol-VP1 nanofluid (2% volumetric concentration) are the examined heat transfer fluids (HTF). The model is validated against data reported in the literature suggesting that the CFD approach can accurately predict the examined system. Specific Cooling Power (SCP), thermal system coefficient of performance (COPth) and solar Coefficient of Performance (COPs) were evaluated to assess the system performance. The results indicate that the system using thermal oil (VP1) operates satisfactorily under Tozeur climatic conditions achieving a SCP of 2.7 W/kgz, a COPth around 0.378 and it could produce a daily useful cooling of 1920 kJ, while the COPs could reach 0.06 for 8 kg of Zeolite adsorbent. Furthermore, using a nanofluid of VP1 and nanoparticles of Cu as HTF enhancer increases the system performance by 10.58%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Source: IRENA (2021)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

A :

Area (m2)

C :

Inertial loss coefficient (m1)

C r :

Concentration ratio

c p :

Heat capacity (J kg1 K1)

d :

Diameter (m)

E :

Energy (kJ)

D so :

Pre-exponent diffusion coefficient (m2 s1)

e :

Storage tank thickness (m)

F R :

Collector heat removal factor

\(\vec{g}\) :

Gravitational acceleration (m s2)

h :

Enthalpy (kJ kg1)

I :

Incident solar radiation (W m2)

k s :

Coefficient of sorption rate (s1)

L :

Length (m)

L ev :

The latent heat of vaporization (kJ kg1)

m :

Mass (kg)

\(\dot{m}\) :

Mass flow rate (kg s1)

\({\dot{m}}_{ads /des}\) :

Ads/desorption rate (kg s1)

p, P :

Pressure (Pa)

R :

Universal gas constant (kJ kmol1 K1)

S mass :

Mass source term (kg m3 s1)

S momentum :

Momentum source term (N m3)

S energy :

Energy source term (W m3)

T :

Temperature (K)

t :

Time (s), total

\(t_{cycle}\) :

Cycle time (s)

\(U\) :

Heat loss coefficient (W m2 K1)

v :

Velocity magnitude (m s1)

\(\vec{v}\) :

Overall velocity vector (m s1)

x :

Water uptake (kg kg1)

\(\Delta H\) :

Latent heat of adsorption (kJ kg1)

α :

Permeability (m2)

\(\varepsilon\) :

Porosity (-)

η op :

Optical efficiency (%)

\(\eta_{th}\) :

Instantaneous collector efficiency (%)

ρ :

Density (kg m3)

µ :

Dynamic viscosity (Pa s)

\(\nabla\) :

Gradient

\(\overline{\overline{\tau }}\) :

Stress tensor (Pa)

a :

Apparent, activation

b :

Bed

ab :

Absorber

ads :

Adsorption

amb :

Ambient

des :

Desorption

cond :

Condenser

day :

Daytime

ev :

Evaporator

eq :

Equilibrium

hr :

Hours

\(i\) :

Inner

in :

Inlet fluid

g :

Gas phase

max :

Maximum

met :

Metal

min :

Minimum

nf :

Nanofluid

\(o\) :

Outer

out :

Outlet fluid

ref :

Refrigeration

s :

Saturation, solar, solid

sr :

Sunrise

ss :

Sunset

st :

Storage tank

w :

Water

z :

Zeolite

Ad-R:

Adsorption refrigeration

COP:

Coefficient of performance

CFD:

Computational fluid dynamics

HTF:

Heat transfer fluid

LDF:

Linear driving force

PTC:

Parabolic trough collector

RMSD:

Root mean square deviation

SCP:

Specific cooling power

UDF:

User defined function

VP1:

Therminol-VP1

References

  1. Kouhestani, F.M., et al.: Evaluating solar energy technical and economic potential on rooftops in an urban setting: the city of Lethbridge, Canada. Int. J. Energy Environ. Eng. 10, 13–32 (2019)

    Article  Google Scholar 

  2. Yoro, K.O., et al.: A review on heat and mass integration techniques for energy and material minimization during CO2 capture. Int. J. Energy Environ. Eng. 10, 367–387 (2019)

    Article  Google Scholar 

  3. El Ouderni, A.R., Maatallah, T., El Alimi, S., Ben Nassrallah, S.: Experimental assessment of the solar energy potential in the gulf of Tunis, Tunisia. Renew. Sustain. Energy Rev. 20, 155–168 (2013)

    Article  Google Scholar 

  4. Rodríguez-Toscano, A., Amaris, C., Sagastume-Gutiérrez, A., Bourouis, M.: Technical, environmental, and economic evaluation of a solar/gas driven absorption chiller for shop** malls in the Caribbean region of Colombia. Case Stud. Therm. Eng. 30, 101743 (2022)

    Article  Google Scholar 

  5. Selvaraju, A., Mani, A.: Analysis of a vapour ejector refrigeration system with environment friendly refrigerants. Int. J. Therm. Sci. 43, 915–921 (2004)

    Article  Google Scholar 

  6. Koronaki, I.P., Papoutsis, E.G., Papaefthimiou, V.D.: Thermodynamic modeling and exergy analysis of a solar adsorption cooling system with cooling tower in Mediterranean conditions. Appl. Therm. Eng. 99, 1027–1038 (2016)

    Article  Google Scholar 

  7. Wang, L.W., Wang, R.Z., Oliveira, R.G.: A review on adsorption working pairs for refrigeration. Renew. Sustain. Energy Rev. 13, 518–534 (2009)

    Article  Google Scholar 

  8. Luo, H.L., et al.: An efficient solar-powered adsorption chiller and its application in low-temperature grain storage. Sol. Energy 81, 607–613 (2007)

    Article  Google Scholar 

  9. Sharafian, A., Bahrami, M.: Assessment of adsorber bed designs in waste-heat driven adsorption cooling systems for vehicle air conditioning and refrigeration. Renew. Sustain. Energy Rev. 30, 440–451 (2014)

    Article  Google Scholar 

  10. Lu, Z., Wang, R.: Experimental and simulation analysis of low temperature heat sources driven adsorption air conditioning, refrigeration, integrating ammonia, and organic expanding power generation. Int. J. Energy Res. 42, 4157–4169 (2018)

    Article  Google Scholar 

  11. Chekirou, W., Boussehain, R., Feidt, M., Karaali, A., Boukheit, N.: Numerical results on operating parameters influence for a heat recovery adsorption machine. Energy Procedia 6, 202–216 (2011)

    Article  Google Scholar 

  12. Alam, K.C.A., Saha, B.B., Akisawa, A.: Adsorption cooling driven by solar collector: a case study for Tokyo solar data. Appl. Therm. Eng. 50, 1603–1609 (2013)

    Article  Google Scholar 

  13. Bel Haj Jrad, A., Ben Hamida, M.B., Ghnay, R., Mhimid, A.: Contribution to the study of combined adsorption–ejection system using solar energy. Adv. Mech. Eng.. 9(7), 79–107 (2017)

    Article  Google Scholar 

  14. Chen, C.J., Wang, R.Z., **a, Z.Z., Kiplagat, J.K., Lu, Z.S.: Study on a compact silica gel-water adsorption chiller without vacuum valves: design and experimental study. Appl. Energy 87, 2673–2681 (2010)

    Article  Google Scholar 

  15. Cherrad, N., Benchabane, A.: Interactive process to control the evaporating temperature of refrigerant for solar adsorption cooling machine with new correlation. Int. J. Interact. Des. Manuf. 12, 473–479 (2018)

    Article  Google Scholar 

  16. el Fadar, A., Mimet, A., Pérez-García, M.: Modelling and performance study of a continuous adsorption refrigeration system driven by parabolic trough solar collector. Sol. Energy 83, 850–861 (2009)

    Article  Google Scholar 

  17. El-Sharkawy, I.I., AbdelMeguid, H., Saha, B.B.: Potential application of solar powered adsorption cooling systems in the Middle East. Appl Energy 126, 235–245 (2014)

    Article  Google Scholar 

  18. Rouf, R.A., Alam, K.C.A., Khan, M.A.H.: Effect of operating conditions on the performance of adsorption solar cooling run by solar collectors. Procedia Eng 56, 607–612 (2013)

    Article  Google Scholar 

  19. Solmuş, I., Rees, D.A.S., Yamal, C., Baker, D., Kaftanoǧlu, B.: Numerical investigation of coupled heat and mass transfer inside the adsorbent bed of an adsorption cooling unit. Int. J. Refrig 35, 652–662 (2012)

    Article  Google Scholar 

  20. Hassan, H.Z., Mohamad, A.A.: A review on solar-powered closed physisorption cooling systems. Renew. Sustain. Energy Rev. 16, 2516–2538 (2012)

    Article  Google Scholar 

  21. Saadaoui, H., Chtourou, N.: Exploring the inter-factor and inter-fuel substitution possibilities in Tunisia: the potential of renewable energy. Environ. Sci. Pollut. Res. 29(46), 70448–70463 (2022)

    Article  Google Scholar 

  22. El Ouderni, A.R., Maatallah, T., El Alimi, S., Ben Nassrallah, S.: Experimental assessment of the solar energy potential in the gulf of Tunis, Tunisia. Renew. Sustain. Energy Rev. 20, 155–168 (2013)

    Article  Google Scholar 

  23. IRENA. Renewable Energy Agency, I. Renewables Readiness Assessment: The Republic of Tunisia. (2021).

  24. Sosnowski, M.: Evaluation of heat transfer performance of a multi-disc sorption bed dedicated for adsorption cooling technology. Energies 12(24), 4660 (2019)

    Article  Google Scholar 

  25. Alotaibi, S., Alotaibi, F., Ibrahim, O.M.: Solar-assisted steam power plant retrofitted with regenerative system using Parabolic Trough Solar Collectors. Energy Rep. 6, 124–133 (2020)

    Article  Google Scholar 

  26. El Fadar, A.: Novel process for performance enhancement of a solar continuous adsorption cooling system. Energy 114, 10–23 (2016)

    Article  Google Scholar 

  27. Mokheimer, E.M.A., Dabwan, Y.N., Habib, M.A., Said, S.A.M., Al-Sulaiman, F.A.: Techno-economic performance analysis of parabolic trough collector in Dhahran, Saudi Arabia. Energy Convers. Manag. 86, 622–633 (2014)

    Article  Google Scholar 

  28. Wole-osho, I., Okonkwo, E.C., Abbasoglu, S., Kavaz, D.: Nanofluids in solar thermal collectors: review and limitations. Int. J. Thermophys. 41(11), 157 (2020)

    Article  Google Scholar 

  29. Allouhi, A., Kousksou, T., Jamil, A., Zeraouli, Y.: Modeling of a thermal adsorber powered by solar energy for refrigeration applications. Energy 75, 589–596 (2014)

    Article  Google Scholar 

  30. Cherrad, N., Benchabane, A., Sedira, L., Rouag, A.: Transient numerical model for predicting operating temperatures of solar adsorption refrigeration cycle. Appl. Therm. Eng. 130, 1163–1174 (2018)

    Article  Google Scholar 

  31. Modi, N., Pandya, B.: Integration of evacuated solar collectors with an adsorptive ice maker for hot climate region. Energy Built. Environ. 3, 181–189 (2022)

    Article  Google Scholar 

  32. Gado, M.G., Megahed, T.F., Ookawara, S., Nada, S., El-Sharkawy, I.I.: Performance and economic analysis of solar-powered adsorption-based hybrid cooling systems. Energy Convers. Manag. (2021). https://doi.org/10.1016/j.enconman.2021.114134

    Article  Google Scholar 

  33. Elsheniti, M.B., Abd El-Hamid, A.T., El- Samni, O.A., Elsherbiny, S.M., Elsayed, E.: Experimental evaluation of a solar two-bed lab-scale adsorption cooling system. Alex. Eng. J. 60, 2747–2757 (2021)

    Article  Google Scholar 

  34. Bellos, E., Tzivanidis, C.: Parametric analysis and optimization of a cooling system with ejector-absorption chiller powered by solar parabolic trough collectors. Energy Convers. Manag. 168, 329–342 (2018)

    Article  Google Scholar 

  35. Ashouri, M., Khoshkar Vandani, A.M., Mehrpooya, M., Ahmadi, M.H., Abdollahpour, A.: Techno-economic assessment of a Kalina cycle driven by a parabolic Trough solar collector. Energy Convers. Manag. 105, 1328–1339 (2015)

    Article  Google Scholar 

  36. Wu, W.D., Zhang, H., Sun, D.W.: Mathematical simulation and experimental study of a modified zeolite 13X-water adsorption refrigeration module. Appl. Therm. Eng. 29, 645–651 (2009)

    Article  Google Scholar 

  37. Yaïci, W., Entchev, E.: Coupled unsteady computational fluid dynamics with heat and mass transfer analysis of a solar/heat-powered adsorption cooling system for use in buildings. Int. J. Heat Mass Transf. (2019). https://doi.org/10.1016/j.ijheatmasstransfer.2019.118648

    Article  Google Scholar 

  38. Mhimid, A.: Theoretical study of heat and mass transfer in a zeolite bed during water desorption: validity of local thermal equilibrium assumption. Int. J. Heat Mass Transf. 41, 2967–2977 (1998)

    Article  MATH  Google Scholar 

  39. Lattieff, F.A., Atiya, M.A., Mahdi, J.M., Majdi, H.S., Talebizadehsardari, P., Yaïci, W.: Performance analysis of a solar cooling system with equal and unequal adsorption/desorption operating time. Energies 14(20), 6749 (2021)

    Article  Google Scholar 

  40. Qasem, N.A.A., Ben-Mansour, R., Habib, M.A.: An efficient CO2 adsorptive storage using MOF-5 and MOF-177. Appl. Energy 210, 317–326 (2018)

    Article  Google Scholar 

  41. Al-Mousawi, F.N., Al-Dadah, R., Mahmoud, S.: Different bed configurations and time ratios: performance analysis of low-grade heat driven adsorption system for cooling and electricity. Energy Convers. Manag. 148, 1028–1040 (2017)

    Article  Google Scholar 

  42. Chan, K.C., Chao, C.Y.H., Sze-To, G.N., Hui, K.S.: Performance predictions for a new zeolite 13X/CaCl2 composite adsorbent for adsorption cooling systems. Int. J. Heat Mass Transf. 55, 3214–3224 (2012)

    Article  Google Scholar 

  43. Marletta, L., Maggio, G., Freni, A., Ingrasciotta, M., Restuccia, G.: A non-uniform temperature non-uniform pressure dynamic model of heat and mass transfer in compact adsorbent beds. Int. J. Heat Mass Transf. 45, 3321–3330 (2002)

    Article  MATH  Google Scholar 

  44. Tatsidjodoung, P., et al.: Experimental and numerical investigations of a zeolite 13X/water reactor for solar heat storage in buildings. Energy Convers. Manag. 108, 488–500 (2016)

    Article  Google Scholar 

  45. Zhang, L.Z., Wang, L.: Effects of coupled heat and mass transfers in adsorbent on the performance of a waste heat adsorption cooling unit. Appl. Therm. Eng. 19, 195–215 (1999)

    Article  Google Scholar 

  46. Sui, Z., Wu, W., You, T., Zheng, Z., Leung, M.: Performance investigation and enhancement of membrane-contactor microchannel absorber towards compact absorption cooling. Int. J. Heat Mass Transf. 169, 120978 (2021)

    Article  Google Scholar 

  47. Li, M., Zhao, Y., Long, R., Liu, Z., Liu, W.: Gradient porosity distribution of adsorbent bed for efficient adsorption cooling. Int. J. Refrig 128, 153–162 (2021)

    Article  Google Scholar 

  48. Khanam, M., Jribi, S., Miyazaki, T., Saha, B.B., Koyama, S.: Numerical investigation of small-scale adsorption cooling system performance employing activated carbon-ethanol pair. Energies 11, 1499 (2018)

    Article  Google Scholar 

  49. Mitra, S., Muttakin, M., Thu, K., Saha, B.B.: Study on the influence of adsorbent particle size and heat exchanger aspect ratio on dynamic adsorption characteristics. Appl. Therm. Eng. 133, 764–773 (2018)

    Article  Google Scholar 

  50. Jribi, S., Miyazaki, T., Saha, B.B., Koyama, S., Maeda, S., Maruyama, T.: Corrected adsorption rate model of activated carbon–ethanol pair by means of CFD simulation. Int. J. Refrig 71, 60–68 (2016)

    Article  Google Scholar 

  51. Ben Amar, N., Sun, L.M., Meunier, F.: Numerical analysis of adsorptive temperature wave regenerative heat pump. Appl. Therm. Eng. 16, 405–418 (1996)

    Article  Google Scholar 

  52. Sha, A.A., Baiju, V.: Thermodynamic analysis and performance evaluation of activated carbon-ethanol two-bed solar adsorption cooling system. Int. J. Refrig 123, 81–90 (2021)

    Article  Google Scholar 

  53. Ma, T., Li, M., Kazemian, A.: Photovoltaic thermal module and solar thermal collector connected in series to produce electricity and high-grade heat simultaneously. Appl. Energy (2020). https://doi.org/10.1016/j.apenergy.2019.114380

    Article  Google Scholar 

  54. Khenfer, N., Dokkar, B., Messaoudi, M.T.: Overall efficiency improvement of photovoltaic-thermal air collector: numerical and experimental investigation in the desert climate of Ouargla region. Int. J. Energy Environ. Eng. 11, 497–516 (2020)

    Article  Google Scholar 

  55. Mwesigye, A., Huan, Z., Meyer, J.P.: Thermal performance and entropy generation analysis of a high concentration ratio parabolic trough solar collector with Cu-Therminol®VP-1 nanofluid. Energy Convers. Manag. 120, 449–465 (2016)

    Article  Google Scholar 

  56. Mwesigye, A., Meyer, J.P.: Optimal thermal and thermodynamic performance of a solar parabolic trough receiver with different nanofluids and at different concentration ratios. Appl. Energy 193, 393–413 (2017)

    Article  Google Scholar 

  57. Allouhi, A., Benzakour Amine, M., Saidur, R., Kousksou, T., Jamil, A.: Energy and exergy analyses of a parabolic trough collector operated with nanofluids for medium and high temperature applications. Energy Convers. Manag. 155, 201–217 (2018)

    Article  Google Scholar 

  58. Wole-osho, I., Okonkwo, E.C., Abbasoglu, S., Kavaz, D.: Nanofluids in solar thermal collectors: review and limitations. Int. J. Thermophys. 41, 1–74 (2020)

    Article  Google Scholar 

  59. el Fadar, A., Mimet, A., Pérez-García, M.: Modelling and performance study of a continuous adsorption refrigeration system driven by parabolic trough solar collector. Sol. Energy 83, 850–861 (2009)

    Article  Google Scholar 

  60. Boushaba, H., Mimet, A.: Performance investigation of single adsorption refrigeration system driven by solar heat storage. Int. J. Air-Cond. Refrig. 26(3), 1850025 (2018)

    Article  Google Scholar 

  61. Sun, L.M., Ben Amar, N., Meunier, F.: Numerical study on coupled heat and mass transfers in an absorber with external fluid heating. Heat Recov. Syst. CHP 15(1), 19–29 (1995)

    Article  Google Scholar 

  62. Leong, K.C., Liu, Y.: Numerical modeling of combined heat and mass transfer in the adsorbent bed of a zeolite/water cooling system. Appl. Therm. Eng. 24, 2359–2374 (2004)

    Article  Google Scholar 

  63. Duquesne, M., Toutain, J., Sempey, A., Ginestet, S., Palomo Del Barrio, E.: Modeling of a nonlinear thermochemical energy storage by adsorption on zeolites. Appl. Therm. Eng. 71, 469–480 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

The first author would like to acknowledge LEMTA laboratory for the research stay (internship). Likewise, the authors would like to thank Faculty of Sciences, Monastir University for the financial support during internship.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the modeling, simulation, results discussion, paper writing and correction. Likewise, they have read and approved the current manuscript version to be published.

Corresponding author

Correspondence to Taysir Mhedheb.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mhedheb, T., Jribi, S., Feidt, M. et al. CFD analysis of adsorption cooling system powered by parabolic trough collector using nanofluid under Tunisia climate. Int J Interact Des Manuf 17, 1307–1322 (2023). https://doi.org/10.1007/s12008-022-01124-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12008-022-01124-4

Keywords

Navigation