Log in

Multiscale RVE modeling for assessing effective elastic modulus of HDPE based polymer matrix nanocomposite reinforced with nanodiamond

  • Original Paper
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

In the present investigation, the effective elastic modulus of high-density polyethylene reinforced with spherical shape inclusion of nanodiamond (ND) nanoparticles (5–15% volume fraction) is evaluated using finite element method based representative volume element (RVE) approach. A 100 × 100 × 100 nm cuboid 3D RVE is generated using ANSYS 2019 material designer module with randomly distributed spherical NDs particles considered as inclusions inside RVE. Three different RVEs were considered based on ND’s 5, 10, and 15% volume fractions distribution. The Young’s modulus results obtained from the RVE approach at different volume fractions is much closer to experimental results than theoretical micromechanical models. The tensile behavior of the nanocomposite is carried out using RVE, and it was observed that the maximum equivalent stress is 143.24 noted for 15 vol% ND nanocomposite, which is decreased by 7.96 and 22.21 for 10 and 5 vol% ND nanocomposite respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Badgayan, N.D., Sahu, S.K., Samanta, S., Sreekanth, P.R.: An insight into mechanical properties of polymer nanocomposites reinforced with multidimensional filler system: a state of art review. Mater. Today Proc. 24, 422–431 (2020)

    Article  Google Scholar 

  2. Sahu, S.K., Sreekanth, P.S.R.: Artificial neural network for prediction of mechanical properties of HDPE based nanodiamond nanocomposite. Polym. Korea 46(5), 614–620 (2022). https://doi.org/10.7317/pk.2022.46.5.1

    Article  Google Scholar 

  3. Yesaswi, C.S., Satya, S.K., Sahu, S.K., Badgayan, N.D., Murthy, P.S.R., Kumar, V.R., Sreekanth, P.R.: Thermal properties of polymer nanocomposites. pp. 99–143. In Advanced Polymer Nanocomposites Elsevier, Netherlands, (2022)

  4. Sahu, S.K., Sreekanth, P.S.: Experimental investigation of in-plane compressive and dam** behavior anisotropic graded honeycomb structure, Arab. J. Sci. Eng. pp. 1–13. (2022)

  5. Satya, S.K., Sreekanth, P.S.: Morphological, thermal and viscoelastic behavior of recycled high density polyethylene nanocomposite incorporated with 1D/2D nanofillers. Iran. Polym. J. 31(5), 629–640 (2022)

    Article  Google Scholar 

  6. Sahu, S.K., Rama Sreekanth, P.S.: Mechanical, thermal and rheological properties of thermoplastic polymer nanocomposite reinforced with nanodiamond, carbon nanotube and graphite nanoplatelets. Adv. Mater. Process. Technol. pp.1–11. (2022). https://doi.org/10.1080/2374068X.2022.2034309

  7. Saddem, M., Koubaa, A., Riedl, B.: Properties of high-density polyethylene-polypropylene wood composites. In: Biocomposites, p.95. (2022)

  8. Ferreira, T., Mendes, G.A., de Oliveira, A.M., Dias, C.G.B.T.: Manufacture and characterization of polypropylene (PP) and high-density polyethylene (HDPE) blocks for potential use as masonry component in civil construction. Polymers 14(12), 2463 (2022)

    Article  Google Scholar 

  9. Sahu, S.K., Badgayan, N.D., Samanta, S., Sreekanth, P.S.R.: March. dynamic mechanical thermal analysis of high density polyethylene reinforced with nanodiamond, carbon nanotube and graphite nanoplatelet. Mater. Sci. Forum 917, 27–31 (2018)

    Article  Google Scholar 

  10. Reda, A.M., Kansouh, W.A., Eid, E.A.: Effect of Fe2O3/Al addition on the neutron shielding, microstructure, thermal, and mechanical properties of HDPE composites. Phys. Scr. 97(6), 065301 (2022)

    Article  Google Scholar 

  11. Badgayan, N.D., Samanta, S., Sahu, S.K., Siva, S.V., Sadasivuni, K.K., Sahu, D., Sreekanth, P.R.: Tribological behaviour of 1D and 2D nanofiller based high densitypoly-ethylene hybrid nanocomposites: a run-in and steady state phase analysis. Wear. 376, 1379–1390 (2017)

    Article  Google Scholar 

  12. Sahu, S.K., Badgayan, N.D., Sreekanth, P.R.: Understanding the influence of contact pressure on the wear performance of HDPE/multidimensional carbon filler based hybrid polymer nanocomposites. Wear, 438.  (2019)

  13. Gumuş, B.E., Yagci, O., Taşdemir, M.: High-density polyethylene/artichoke leaf powder polymer composites: dynamic mechanical, morphological and thermal properties. Iran. Polym. J. 1–11. (2022)

  14. Sukiman, M.S., Kanit, T., N’guyen, F., Imad, A., Erchiqui, F.: On effective thermal properties of wood particles reinforced HDPE composites. Wood Sci. Technol. 56(2), 603–622 (2022)

    Article  Google Scholar 

  15. Samuel, J., Al-Enezi, S., Al-Banna, A., Abraham, G.: Effect of compatibilising agents on the morphological, thermal and rheological properties of high density polyethylene/carbon nano fiber composites. Polym. Plast. Technol. Mater. 61(1), 1–12 (2022)

    Google Scholar 

  16. Sahu, S.K., Badgayan, N.D., Sreekanth, P.R.: Rheological properties of HDPE based thermoplastic polymeric nanocomposite reinforced with multidimensional carbon-based nanofillers. Biointerface Res. Appl. Chem. 12(4), 5709–5715 (2022)

    Google Scholar 

  17. Stan, F., Sandu, I.L., Stanciu, N.V., Fetecau, C.: The influence of carbon nanotubes and reprocessing on the morphology and properties of high-density polyethylene/carbon nanotube composite. J. Manuf. Sci. Eng. 144(4). (2022)

  18. Obeid, A., Roumie, M., Badawi, M.S., Awad, R.: Evaluation of the effect of different nano-size of WO3 on the structural and mechanical properties of HDPE. J. Inorg. Organometall. Polym. Mater. 32(4), 1506–1519 (2022)

    Article  Google Scholar 

  19. Badgayan, N.D., Sahu, S.K., Samanta, S., Sreekanth, P.S.: Evaluation of dynamic mechanical and thermal behavior of HDPE reinforced with MWCNT/h-BNNP: an attempt to find possible substitute for a metallic knee in transfemoral prosthesis. Int. J. Thermophys. 40(10), 1–20 (2019)

    Article  Google Scholar 

  20. Honaker, K., Vautard, F., Drzal, L.T.: Influence of processing methods on the mechanical and barrier properties of HDPE-GNP nanocomposites. Adv. Compos. Hybrid Mater. 4(3), 492–504 (2021)

    Article  Google Scholar 

  21. Sahu, S.K., Badgayan, N.D., Samanta, S., Sreekanth, P.R.: Experimental investigation on multidimensional carbon nanofiller reinforcement in HDPE: an evaluation of mechanical performance. Mater. Today Proc. 24, 415–421 (2020)

    Article  Google Scholar 

  22. Song, P.A., Yu, Y., Wu, Q., Fu, S.: Facile fabrication of HDPE-g-MA/nanodiamond nanocomposites via one-step reactive blending. Nanoscale Res. Lett. 7(1), 1–7 (2012)

    Article  Google Scholar 

  23. Kapoor, S., Goyal, M., **dal, P.: Enhanced thermal, static, and dynamic mechanical properties of multi-walled carbon nanotubes-reinforced acrylonitrile butadiene styrene nanocomposite. J. Thermoplast. Compos. Mater. 35(2), 216–280 (2022). https://doi.org/10.1177/0892705719886012

    Article  Google Scholar 

  24. Ahmad, A., Mansor, N., Mahmood, H., Iqbal, T., Moniruzzaman, M.: Effect of ionic liquids on thermomechanical properties of polyetheretherketone-multiwalled carbon nanotubes nanocomposites. J. Appl. Polym. Sci. 139(11), 51788 (2022). https://doi.org/10.1002/app.51788

    Article  Google Scholar 

  25. Namdev, A., Telang, A., Purohit, R.: Synthesis and mechanical characterization of epoxy hybrid composites containing graphene nanoplatelets. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 09544062221081286. (2022)

  26. Bilisik, K., Akter, M.: Graphene nanoplatelets/epoxy nanocomposites: a review on functionalization, characterization techniques, properties, and applications. J. Reinf. Plast. Compos. 41(3–4), 99–129 (2022)

    Article  Google Scholar 

  27. Badgayan, N.D., Sahu, S.K., Samanta, S., Sreekanth, P.R.: Assessment of nanoscopic dynamic mechanical properties and BCN triad effect on MWCNT/h-BNNP nanofillers reinforced HDPE hybrid composite using oscillatory nanoindentation: an insight into medical applications. J. Mech. Behav. Biomed. Mater. 80, 180–188 (2018)

    Article  Google Scholar 

  28. Sahu, S.K., Badgayan, N.D., Samanta, S., Rama Sreekanth, P.S.: Evaluation of cell parameter variation on energy absorption characteristic of thermoplastic honeycomb sandwich structure. Arab. J. Sci. Eng. 46(12), 12487–12507 (2021)

    Article  Google Scholar 

  29. Maitra, U., Prasad, K.E., Ramamurty, U., Rao, C.N.R.: Mechanical properties of nanodiamond-reinforced polymer-matrix composites. Solid State Commun. 149(39–40), 1693–1697 (2009)

    Article  Google Scholar 

  30. Boutaleb, S., Zaïri, F., Mesbah, A., Nait-Abdelaziz, M., Gloaguen, J.M., Boukharouba, T., Lefebvre, J.M.: Micromechanics-based modelling of stiffness and yield stress for silica/polymer nanocomposites. Int. J. Solids Struct. 46(7–8), 1716–1726 (2009)

    Article  MATH  Google Scholar 

  31. Hassanzadeh-Aghdam, M.K., Ansari, R., Mahmoodi, M.J., Darvizeh, A.: Effect of nanoparticle aggregation on the creep behavior of polymer nanocomposites. Compos. Sci. Technol. 162, 93–100 (2018)

    Article  Google Scholar 

  32. Sahu, S.K., Badgayan, N.D., Samanta, S., Sreekanth, P.S.R.: Quasistatic and dynamic nanomechanical properties of HDPE reinforced with 0/1/2 dimensional carbon nanofillers based hybrid nanocomposite using nanoindentation. Mater. Chem. Phys. 203, 173–184 (2018)

    Article  Google Scholar 

  33. Daramola, O.O., Olajide, J.L., Adediran, A.A., Adewuyi, B.O., Ayodele, T.T., Desai, D.A., Sadiku, E.R.: Multiscale analysis and experimental validation of the effective elastic modulus of epoxy-dioctahedral phyllosilicate clay composite. Heliyon 6(6), e04008 (2020)

    Article  Google Scholar 

  34. Sharma, A., Munde, Y., Kushvaha, V.: Representative volume element based micromechanical modelling of rod shaped glass filled epoxy composites. SN Appl. Sci. 3(2), 1–10 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Santosh Kumar Sahu or P. S. Rama Sreekanth.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahu, S.K., Rama Sreekanth, P.S. Multiscale RVE modeling for assessing effective elastic modulus of HDPE based polymer matrix nanocomposite reinforced with nanodiamond. Int J Interact Des Manuf (2022). https://doi.org/10.1007/s12008-022-01080-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12008-022-01080-z

Keywords

Navigation