Log in

Physio-mechanical characterization of kenaf/saw dust reinforced polymer matrix composite and selection of optimal configuration using MADM-VIKOR approach

  • Original Paper
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

The current study focuses on development and mechaincal charactetization of kena and waste saw dust reinforced hybrid composites for various structural/ semi structural applications in automobiles. The proposed composites are developed and tested in four different configurations namely kenaf + epoxy (KE), kenaf + epoxy + 5 wt% saw dust (KESC5), kenaf + epoxy + 10 wt% saw dust (KESC10) and kenaf + epoxy + 20 wt% saw dust (KESC20). It is found from the physical characterization that addition of selected saw dust results in enhenced density of the composites and the proposed composites are also sussceptible to water absorption due to the hydrophillic nature of reinforcements used. The brightest side of the proposed hybrid composites is seen in their tensile and flexural strengths, where the tensile strength of the KESC5 composites enhanced appreciably by 3.34 times compared with KE composite. Also, tensile strength of hybrid composites are better than non hybrid composite. The flexural strength of the saw dust reinforced kenaf/epoxy composite showed a promising behavior with KESC10 exhibiting 90.56 MPa which is 1.32 times more than the non hybrid composite KE. But, it is found that addition of saw dust results in adverse effects on the impact strength of proposed composites due to reduction of elasticity of material and thereby reducing the deformability of matrix. Based on the outcome of the VIKOR, it is concluded that KESC5 composite is the better composite among all its counterparts considered in the present study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kling, S., Czigány, T.: Damage detection and self-repair in hollow glass fiber fabric-reinforced epoxy composites via fiber filling. Compos. Sci. Technol. 99, 82–88 (2014). https://doi.org/10.1016/j.compscitech.2014.05.020

    Article  Google Scholar 

  2. Wang, Z., Xu, L., Sun, X., Shi, M., Liu, J.: Fatigue behavior of glass-fiber-reinforced epoxy composites embedded with shape memory alloy wires. Compos. Struct. 178, 311–319 (2017). https://doi.org/10.1016/j.compstruct.2017.07.027

    Article  Google Scholar 

  3. Wambua, P., Ivens, J., Verpoest, I.: Natural fibres: Can they replace glass in fibre reinforced plastics? Compos. Sci. Technol. 63, 1259–1264 (2003). https://doi.org/10.1016/S0266-3538(03)00096-4

    Article  Google Scholar 

  4. Monteiro, S.N., Lopes, F.P.D., Ferreira, A.S., Nascimento, D.C.O.: Natural-fiber polymer-matrix composites: cheaper, tougher, and environmentally friendly. JOM 61, 17–22 (2009). https://doi.org/10.1007/s11837-009-0004-z

    Article  Google Scholar 

  5. Mahesh, V., Joladarashi, S., Kulkarni. Satyabodh M,: Experimental investigation on slurry erosive behaviour of biodegradable flexible composite and optimization of parameters using Taguchi’s approach. J. Compos. Adv. Mater. 28, 345–355 (2018). https://doi.org/10.3166/rcma.28

    Article  Google Scholar 

  6. Mahesh, V., Joladarashi, S., Kulkarni, S.M.: A comprehensive review on material selection for polymer matrix composites subjected to impact load. Def. Technol. 17, 257–277 (2020)

    Article  Google Scholar 

  7. Mahesh, V., Joladarashi, S., Kulkarni, S.M.: An experimental investigation on low-velocity impact response of novel jute/ rubber flexible bio-composite. Compos. Struct. 225(111190), 1–12 (2019). https://doi.org/10.1016/j.compstruct.2019.111190

    Article  Google Scholar 

  8. Mahesh, V., Joladarashi, S., Kulkarni, S.M.: Damage mechanics and energy absorption capabilities of natural fiber reinforced elastomeric based bio composite for sacrificial structural applications. Def. Technol. 17, 161–176 (2020). https://doi.org/10.1016/j.dt.2020.02.013

    Article  Google Scholar 

  9. Mahesh, V., Joladarashi, S., Kulkarni, S.M.: Development and mechanical characterization of novel polymer-based flexible composite and optimization of stacking sequences using VIKOR and PSI techniques. J. Thermoplast. Compos. Mater. (2019). https://doi.org/10.1177/0892705719864619

    Article  Google Scholar 

  10. Mahesh, V., Joladarashi, S., Kulkarni, S.M.: An experimental study on adhesion, flexibility, interlaminar shear strength, and damage mechanism of jute/rubber-based flexible “green” composite. J. Thermoplast. Compos. Mater (2019). https://doi.org/10.1177/0892705719882074

    Article  Google Scholar 

  11. Mahesh, V., Mahesh, V., Puneeth, K.: Influence of areca nut nano filler on mechanical and tribological properties of coir fiber reinforced epoxy based polymer composite. Sci. Iran Trans. Mech. Eng. 27, 1972 (2020). https://doi.org/10.24200/sci.2019.52083.2527

    Article  Google Scholar 

  12. Mahesh, V., Joladarashi, S., Kulkarni, S.M.: Suitability study of jute-epoxy composite laminate for low and high velocity impact applications. In: AIP Conference Proceedings, p. 1943 (2018). https://doi.org/10.1063/1.5029682.

  13. Mahesh, V., Joladarashi, S., Kulkarni, S.M.: Experimental study on abrasive wear behaviour of flexible green composite intended to be used as protective cladding for structures. Int. J. Mod. Manuf. Technol. XI, 69–76 (2019)

    Google Scholar 

  14. Ketabchi, M.R., Khalid, M., Ratnam, C.T., Walvekar, R.: Mechanical and thermal properties of polylactic acid composites reinforced with cellulose nanoparticles extracted from kenaf fibre. Mater. Res. Express (2016). https://doi.org/10.1088/2053-1591/3/12/125301

    Article  Google Scholar 

  15. Liu, Y., Ma, Y., Che, J., Duanmu, L., Zhuang, J., Tong, J.: Natural fibre reinforced non-asbestos organic non-metallic friction composites: effect of abaca fibre on mechanical and tribological behaviour. Mater. Res. Express (2018). https://doi.org/10.1088/2053-1591/aac1e0

    Article  Google Scholar 

  16. Khalil, A.H.P.S., Masri, M., Saurabh, C.K., Fazita, M.R.N., Azniwati, A.A., Sri Aprilia, N.A., et al.: Incorporation of coconut shell based nanoparticles in kenaf/coconut fibres reinforced vinyl ester composites. Mater. Res. Express (2017). https://doi.org/10.1088/2053-1591/aa62ec

    Article  Google Scholar 

  17. Patel, V.K., Chauhan, S., Katiyar, J.K.: Physico-mechanical and wear properties of novel sustainable sour-weed fiber reinforced polyester composites. Mater. Res. Express 5, 045310 (2018)

    Article  Google Scholar 

  18. Vignesh, K.: Mercerization treatment parameter effect on coir fiber reinforced polymer matrix composite Mercerization treatment parameter effect on coir fi ber reinforced polymer matrix composite. Mater. Res. Express 5, 075303 (2018)

    Article  Google Scholar 

  19. Mahesh, V., Nilabh, A., Joladarshi, S., Kulkarni, S.M.: Analysis of impact behaviour of sisal-epoxy composites under low velocity regime. Rev. Des. Compos. Des. Matériaux Avancés 31, 57 (2021)

    Article  Google Scholar 

  20. Mahesh, V., Joladarashi, S., Kulkarni, S.: Investigation on effect of using rubber as core material in sandwich composite plate subjected to low velocity normal and oblique impact loading. Sci. Iran Trans. Mech. Eng. 26, 897–907 (2019). https://doi.org/10.24200/sci.2018.5538.1331

    Article  Google Scholar 

  21. Mahesh, V., Joladarashi, S., Kulkarni, S.: Behaviour of natural rubber in comparison with structural steel, aluminium and glass epoxy composite under low velocity impact loading. Mater. Today Proc. 4, 10721–10728 (2017). https://doi.org/10.1016/j.matpr.2017.08.019

    Article  Google Scholar 

  22. Mahesh, V., Joladarashi, S., Kulkarni, S.M.: Modelling and analysis of material behaviour under normal and oblique low velocity impact. Mater. Today Proc. 5, 6635–6644 (2018). https://doi.org/10.1016/j.matpr.2017.11.319

    Article  Google Scholar 

  23. Mahesh, V., Joladarshi, S., Kulkarni, S.M.: Comparative study on energy absorbing behavior of stiff and flexible composites under low velocity impact. In: AIP Conference Proceedings, vol. 2057, pp. 020025-1 to 020025-6 (2019). https://doi.org/10.1063/1.5085596

  24. Mahesh, V., Joladarashi, S., Kulkarni, S.M.: Slurry erosive study and optimization of material and process parameters of single and hybrid matrix flexible composites using Taguchi approach. In: AIP Conference Proceedings (2020). https://doi.org/10.1063/1.5141606

  25. Mahesh, V., Joladarashi, S., Kulkarni, S.M.: Physio-mechanical and wear properties of novel jute reinforced natural rubber based flexible composite Physio-mechanical and wear properties of novel jute reinforced natural rubber based flexible composite. Mater. Res. Express 6, 055503 (2019)

    Article  Google Scholar 

  26. Holbery, J., Houston, D.: Natural-fibre-reinforced polymer composites in automotive applications. J. Miner. Met. Mater. Soc. 58, 80–86 (2006). https://doi.org/10.1007/s11837-006-0234-2

    Article  Google Scholar 

  27. Thomas, S., Paul, L.S.A., Pothan, B.D.: Natural fibres: structure, properties and applications. In: Kalia, S., Kaith, B.S. (eds.) Cellulose Fibers: Bio- and Nano-Polymer Composites, pp. 3–42. Springer, Berlin (2011). https://doi.org/10.1007/978-3-642-17370-7

    Chapter  Google Scholar 

  28. Nurazzi, N.M., Khalina, A., Sapuan, S.M., Rahmah, M.: Development of sugar palm yarn/glass fibre reinforced unsaturated polyester hybrid composites development of sugar palm yarn/glass fibre reinforced unsaturated polyester hybrid composites. Mater. Res. Express 5, 045308 (2018)

    Article  Google Scholar 

  29. Judawisastra, H., Sitohang, R.D.R., Rosadi, M.S.: Water absorption and tensile strength degradation of Petung bamboo (Dendrocalamus asper) fiber—reinforced polymeric composites. Mater. Res. Express (2017). https://doi.org/10.1088/2053-1591/aa8a0d

    Article  Google Scholar 

  30. Azghan, M.A., Eslami-farsani, R.: The effects of stacking sequence and thermal cycling on the flexural properties of laminate composites of aluminium-epoxy/basalt-glass fibres. Mater. Res. Express 5, 025302 (2018)

    Article  Google Scholar 

  31. Sapiai, N., Jumahat, A., Mahmud, J.: Mechanical properties of functionalised CNT filled kenaf reinforced epoxy composites. Mater. Res. Express (2018). https://doi.org/10.1088/2053-1591/aabb63

    Article  Google Scholar 

  32. Mahesh, V., Mahesh, V., Harursampath, D.: Influence of alkali treatment on physio-mechanical properties of jute–epoxy composite. Adv. Mater. Process. Technol. 00, 1–12 (2021). https://doi.org/10.1080/2374068X.2021.1934643

    Article  Google Scholar 

  33. Kumar, S., Patel, V.K., Mer, K.K.S., FeketeGusztav, T.S.: Influence of woven bast-leaf hybrid fiber on the physio-mechanical and sliding wear performance of epoxy based polymer composites. Mater. Res. Express 5, 1–13 (2018). https://doi.org/10.1088/2053-1591/aadbe6Manuscript

    Article  Google Scholar 

  34. Zini, E., Focarete, M.L., Noda, I., Scandola, M.: Bio-composite of bacterial poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) reinforced with vegetable fibers. Compos. Sci. Technol. 67, 2085–2094 (2007). https://doi.org/10.1016/j.compscitech.2006.11.015

    Article  Google Scholar 

  35. La Mantia, F.P., Morreale, M.: Green composites: a brief review. Compos. Part A Appl. Sci. Manuf. 42, 579–588 (2011). https://doi.org/10.1016/j.compositesa.2011.01.017

    Article  Google Scholar 

  36. Mahesh, V., Joladarashi, S., Kulkarni, S.M.: Three body abrasive wear assessment of novel jute/natural rubber flexible green composite. J. Thermoplast. Compos. Mater. (2021). https://doi.org/10.1177/08927057211017185

    Article  Google Scholar 

  37. Mahesh, V., Joladarashi, S., Kulkarni, S.M.: Comparative study on ballistic impact response of neat fabric, compliant, hybrid compliant and stiff composite. Thin Walled Struct. 165, 107986 (2021). https://doi.org/10.1016/j.tws.2021.107986

    Article  Google Scholar 

  38. Nishimura, A., Katayama, H., Kawahara, Y., Sugimura, Y.: Characterization of kenaf phloem fibers in relation to stem growth. Ind. Crops Prod. 37, 547–552 (2012). https://doi.org/10.1016/j.indcrop.2011.07.035

    Article  Google Scholar 

  39. Karimi, S., Tahir, P.M., Karimi, A., Dufresne, A., Abdulkhani, A.: Kenaf bast cellulosic fibers hierarchy: a comprehensive approach from micro to nano. Carbohydr. Polym. 101, 878–885 (2014). https://doi.org/10.1016/j.carbpol.2013.09.106

    Article  Google Scholar 

  40. Ramesh, M.: Kenaf (Hibiscus cannabinus L.) fibre based bio-materials: a review on processing and properties. Prog. Mater. Sci. 78–79, 1–92 (2016). https://doi.org/10.1016/j.pmatsci.2015.11.001

    Article  Google Scholar 

  41. Rong, M., Zhang, M., Liu, Y., Yang, G., Zeng, H.: The effect of fiber treatment on the mechanical properties of unidirectional sisal- reinforced epoxy composites. Compos. Sci. Technol. 61, 1437–1447 (2001)

    Article  Google Scholar 

  42. Rashdi, A.A.A., Sapuan, S.M., Ahmad, M.M.H.M., Abdan, K.B.: Review of kenaf fiber reinforced polymer composites. Polim. Polym. 54, 777–780 (2009). https://doi.org/10.14314/polimery.2009.777

    Article  Google Scholar 

  43. Yahaya, R., Sapuan, S., Jawaid, M., Leman, Z., Zainudin, E.: Review of kenaf reinforced hybrid biocomposites: potential for defence applications. Curr. Anal. Chem. 14, 226–240 (2018)

    Article  Google Scholar 

  44. Ashori, A., Harun, J., Raverty, W., Yusoff, M.N.M.: Chemical and morphological characteristics of Malaysian cultivated kenaf (Hibiscus cannabinus) fiber. Polym. Plast. Technol. Eng. 45, 131–134 (2006). https://doi.org/10.1080/03602550500373782

    Article  Google Scholar 

  45. INFO: KENAF n.d. https://naturalfibersinfo.org/?page_id=85

  46. Saba, N., Tahir, P.M., Jawaid, M.: A review on potentiality of nano filler/natural fiber filled polymer hybrid composites. Polymers (Basel) 6, 2247–2273 (2014). https://doi.org/10.3390/polym6082247

    Article  Google Scholar 

  47. Njuguna, J., Pielichowski, K., Desai, S.: Nanofiller-reinforced polymer nanocomposites. Polym. Adv. Technol. 19, 947–959 (2008). https://doi.org/10.1002/pat

    Article  Google Scholar 

  48. Borba, P.M., Tedesco, A., Lenz, D.M.: Effect of reinforcement nanoparticles addition on mechanical properties of SBS/Curauá fiber composites. Mater. Res. 17, 412–419 (2014). https://doi.org/10.1590/S1516-14392013005000203

    Article  Google Scholar 

  49. Vishwas, M., Vinyas, M., Puneeth, K.: Infuence of areca nut nanofiller on mechanical and tribological properties of coir fibre reinforced epoxy based polymer composite. Sci. Iran 27, 1972–1981 (2020). https://doi.org/10.24200/sci.2019.52083.2527

    Article  Google Scholar 

  50. Ramkumar, R., Saravanan, P.: Assessment of composites using waste sugarcane bagasse fibre and wood dust powder. Int. J. Innov. Technol. Explor. Eng. 9, 2126–2131 (2020). https://doi.org/10.35940/ijitee.e3016.039520

    Article  Google Scholar 

  51. Gulitah, V., Liew, K.C.: Morpho-mechanical properties of wood fiber plastic composite (WFPC) based on three different recycled plastic codes. Int. J. Biobased Plast. 1, 22–30 (2019). https://doi.org/10.1080/24759651.2019.1631242

    Article  Google Scholar 

  52. Atul Ltd. Polymer Division. Technical data sheet Lapox L-12 K-6. 2020.

  53. Idrus, M.A.M.M., Hamdan, S., Rahman, M.R., Islam, M.S.: Treated tropical wood sawdust-polypropylene polymer composite: mechanical and morphological study. J. Biomater. Nanobiotechnol. 02, 435–444 (2011). https://doi.org/10.4236/jbnb.2011.24053

    Article  Google Scholar 

  54. Ferede, E.: Evaluation of mechanical and water absorption properties of alkaline-treated sawdust-reinforced polypropylene composite. J. Eng. (UK) 2020, 1–8 (2020). https://doi.org/10.1155/2020/3706176

    Article  Google Scholar 

  55. Agnantopoulou, E., Tserki, V., Phillipou, M.J., Panayiotou, C.: Development of biodegradable composites based on wood waste flour and thermoplastic starch. J. Appl. Polym. Sci. 126, E273–E281 (2012)

    Article  Google Scholar 

  56. Islam, M.N., Islam, M.S.: Characterization of chemically modified sawdust-reinforced recycled polyethylene composites. J. Thermoplast. Compos. Mater. 28, 1135–1153 (2015). https://doi.org/10.1177/0892705713503671

    Article  Google Scholar 

  57. Shakuntala, O., Raghavendra, G., Samir, K.A.: Effect of filler loading on mechanical and tribological properties of wood apple shell reinforced epoxy composite. Adv. Mater. Sci. Eng. 2014, 538651 (2014). https://doi.org/10.1155/2014/538651

    Article  Google Scholar 

  58. Gobikannan, T., Berihun, H., Aklilu, E., Pawar, S.J., Akele, G., Agazie, T., et al.: Development and characterization of sisal fiber and wood dust reinforced polymeric composites. J. Nat. Fibers 18, 1924–1933 (2021). https://doi.org/10.1080/15440478.2019.1710649

    Article  Google Scholar 

  59. Sreekanth, M.S., Bambole, V.A., Mhaske, S.T., Mahanwar, P.A.: Effect of Particle size and concentration of Flyash on properties of polyester thermoplastic elastomer composites. J. Miner. Mater. Charact. Eng. 08, 237–248 (2009). https://doi.org/10.4236/jmmce.2009.83021

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vishwas Mahesh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chandrika, S., Kumar, T.R.H. & Mahesh, V. Physio-mechanical characterization of kenaf/saw dust reinforced polymer matrix composite and selection of optimal configuration using MADM-VIKOR approach. Int J Interact Des Manuf (2022). https://doi.org/10.1007/s12008-022-01078-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12008-022-01078-7

Keywords

Navigation