Log in

Experimental investigation of electrochemical discharge drilling (ECDM-D) performance characteristics for N-BK7 glass material

  • Original Paper
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

ECDM is important micro-machining technique to machine mostly non-conductive material like glasses, ceramics, composites, and alloys. The process has tremendous potential to replace earlier existing expensive processes. In this paper, an attempt has been made to machine important N-BK7 glass material with ECDM drilling process, to investigate the process capabilities. The TM (Taguchi Method) has been used for modeling purpose, and multi optimization process is also done by TM (Taguchi method) incorporated along with weighted principal component (WPC). In this study the signal to noise ratio (S/N) has been used to find the relative contribution of main input parameter such as supplied voltage, electrolyte concentration, inter electrode gap and work piece thickness in controlling the machining performance, such as material removal rate (MRR) and tool wear rate (TWR) of ECDM drilling process, by considering MRR and TWR as response parameters. The WPC has been used to weigh each characteristic. The confirmation of experimental result under parametric condition provided to ensure the improvement in quality characteristics of the process. The results show the hybrid methodology can improve the process performance by 25% in MRR and TWR reduced by 7%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Judy, J.W.: Microelectromechanical systems (MEMS): fabrication, design and applications. Smart Mater. Struct. 10(6), 1115–1134 (2001). https://doi.org/10.1088/0964-1726/10/6/301

    Article  Google Scholar 

  2. Arab, J., Mishra, D.K., Kannojia, H.K., et al.: Fabrication of multiple through-holes in non-conductive materials by electrochemical discharge machining for RF MEMS packaging. J. Mater. Process Technol. 271, 542–553 (2019). https://doi.org/10.1016/j.jmatprotec.2019.04.032

    Article  Google Scholar 

  3. Asad, A.B.M.A., Masaki, T., Rahman, M., et al.: Tool-based micro-machining. J. Mater. Process Technol. 192–193, 204–211 (2007). https://doi.org/10.1016/j.jmatprotec.2007.04.038

    Article  Google Scholar 

  4. Iliescu, C., Tay, F.E.H., Miao, J.: Strategies in deep wet etching of Pyrex glass. Sens. Actuat. A: Phys. 133, 395–400 (2007). https://doi.org/10.1016/j.sna.2006.06.044

    Article  Google Scholar 

  5. Taylor, P., Tang, L., Tang, L., Guo, Y.: Materials and manufacturing processes experimental study of special purpose stainless steel on electrochemical machining of electrolyte composition experimental study of special purpose stainless steel on electrochemical machining of electrolyte composition. Mater. Manufact. Process. 28(4), 457–462 (2013)

    Article  Google Scholar 

  6. Kumar, M., Vaishya, R.O., Oza, A.D., Suri, N.M.: Experimental investigation of wire-electrochemical discharge machining (WECDM) performance characteristics for quartz material. Silicon 12, 2211–2220 (2020). https://doi.org/10.1007/s12633-019-00309-z

    Article  Google Scholar 

  7. Kumar, S., Singh, A.K.: Magnetorheological nanofinishing of BK7 glass for lens manufacturing. Mater Manuf Process 33, 1188–1196 (2018). https://doi.org/10.1080/10426914.2017.1364759

    Article  Google Scholar 

  8. Kumar, V., Singh, H.: Rotary ultrasonic drilling of silica glass BK-7: microstructural investigation and process optimization through TOPSIS. Silicon 11, 471–485 (2019). https://doi.org/10.1007/s12633-018-9933-x

    Article  Google Scholar 

  9. Kumar, U., Singh, M., Singh, S.: Wire-Electrochemical discharge machining of SiC reinforced Z-pinned polymer matrix composite using grey relational analysis. Silicon (2020). https://doi.org/10.1007/s12633-020-00484-4

    Article  Google Scholar 

  10. Hocheng, H., Tsao, C.C.: The path towards delamination-free drilling of composite materials. J. Mater. Process. Technol. 167, 251–264 (2005). https://doi.org/10.1016/j.jmatprotec.2005.06.039

    Article  Google Scholar 

  11. Ma, Y., Nie, W., Lu, J., Chen, H.: Study on surface quality of BK7 optical glass by longitudinal torsional composite ultrasonic vibration milling. Mater. Sci. Forum. 984, 51–57 (2020). https://doi.org/10.4028/www.scientific.net/msf.984.51

    Article  Google Scholar 

  12. Dhiman, P., Vaishya, R., Kumar, M.: A review on machining by electrochemical discharge phenomena. Int. J. Tech. Innov. Mod. Eng. Sci. Impact. 5, 2017–2020 (2019)

    Google Scholar 

  13. Goud, M., Sharma, A.K.: A three-dimensional finite element simulation approach to analyze material removal in electrochemical discharge machining. Proc. Inst. Mech. Eng. Part. C. J. Mech. Eng. Sci. 231, 2417–2428 (2017). https://doi.org/10.1177/0954406216636167

    Article  Google Scholar 

  14. Kumar, N., Mandal, N., Das, A.K.: Micro-machining through electrochemical discharge processes: a review. Mater. Manuf. Process. 00, 1–42 (2020). https://doi.org/10.1080/10426914.2020.1711922

    Article  Google Scholar 

  15. Kumar, M., Vaishya, R.O., Suri, N.M.: Machinability Study of Zirconia Material by Micro-ECDM. In: Sharma, V.S., Dixit, U.S., Sørby, K., Bhardwaj, A., Trehan, R. (eds.) Manufacturing Engineering: Select Proceedings of CPIE 2019, pp. 195–209. Springer Singapore, Singapore (2020). https://doi.org/10.1007/978-981-15-4619-8_15

    Chapter  Google Scholar 

  16. Gupta, P.K., Dvivedi, A., Kumar, P.: Developments on electrochemical discharge machining: a review of experimental investigations on tool electrode process parameters. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 229, 910–920 (2015). https://doi.org/10.1177/0954405414534834

    Article  Google Scholar 

  17. Wüthrich, R., Fascio, V.: Machining of non-conducting materials using electrochemical discharge phenomenon—An overview. Int. J. Mach. Tools Manuf. 45, 1095–1108 (2005). https://doi.org/10.1016/j.ijmachtools.2004.11.011

    Article  Google Scholar 

  18. Oza, AD., Kumar, A., Badheka, V.: (2017) Traveling Wire Electrochemical Discharge Machining: Principle And Possibilities. In: Advances in Materials and Processing: Challenges and Opportunities (AMPCO 2017)

  19. Masuzawa, T., Kuo, C.L., Fu**o, M.: A combined electrical machining process for micronozzle fabrication. CIRP Ann. - Manuf. Technol. 43, 189–192 (1994). https://doi.org/10.1016/S0007-8506(07)62193-3

    Article  Google Scholar 

  20. Ladeesh, V.G., Manu, R.: Grinding-aided electrochemical discharge drilling in the light of electrochemistry. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 233, 1896–1909 (2019). https://doi.org/10.1177/0954406218780129

    Article  Google Scholar 

  21. Kurafuji, H., Suda, K.: Electrical discharge drilling of glass. Ann. CIRP 16, 415–419 (1968)

    Google Scholar 

  22. Cook, N.H., Foote, G.B., Jordan, P., Kalyani, B.N.: Experimental studies in electro-machining. J. Eng. Ind. 95, 945–950 (1973). https://doi.org/10.1115/1.3438273

    Article  Google Scholar 

  23. Singh, M., Singh, S., Kumar, S.: Experimental investigation for generation of micro-holes on silicon wafer using electrochemical discharge machining process. Silicon 12, 1683–1689 (2020). https://doi.org/10.1007/s12633-019-00273-8

    Article  Google Scholar 

  24. Singh, M., Singh, S.: Electrochemical discharge machining: A review on preceding and perspective research. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 233, 1425–1449 (2019). https://doi.org/10.1177/0954405418798865

    Article  Google Scholar 

  25. Mishra, DK., Arab, J., Pawar, K., Dixit, P.: (2019) Fabrication of deep microfeatures in glass substrate using electrochemical discharge machining for biomedical and microfluidic applications. 2019 IEEE 21st Electron Packag Technol Conf EPTC 2019 263–266. https://doi.org/10.1109/EPTC47984.2019.9026714

  26. Mishra, D.K., Arab, J., Magar, Y., Dixit, P.: High aspect ratio glass micromachining by multi-pass electrochemical discharge based micromilling technique. ECS J Solid State Sci Technol 8, P322–P331 (2019). https://doi.org/10.1149/2.0191906jss

    Article  Google Scholar 

  27. Rahman, M., Lim, H.S., Neo, K.S., et al.: Tool-based nanofinishing and micromachining. J. Mater. Process. Technol. 185, 2–16 (2007). https://doi.org/10.1016/j.jmatprotec.2006.03.121

    Article  Google Scholar 

  28. Coteaţǎ, M., Schulze, H.P., Slǎtineanu, L.: Drilling of difficult-to-cut steel by electrochemical discharge machining. Mater. Manuf. Process. 26, 1466–1472 (2011). https://doi.org/10.1080/10426914.2011.557286

    Article  Google Scholar 

  29. Rajput, V., Pundir, S.S., Goud, M., Suri, N.M.: Multi-response optimization of ECDM parameters for silica (Quartz) using grey relational analysis. Silicon 13, 1619–1640 (2021). https://doi.org/10.1007/s12633-020-00538-7

    Article  Google Scholar 

  30. Singh, M., Singh, S., Kumar, S.: Environmental aspects of various electrolytes used in electrochemical discharge machining process. J. Brazilian Soc. Mech. Sci. Eng. (2020). https://doi.org/10.1007/s40430-020-02492-2

    Article  Google Scholar 

  31. Rolf Wuthrich JDAZ.: (2015) Copyright. In: Micromachining Using Electrochemical Discharge Phenomenon, 2nd (ed) Elsevier, (p 5)

  32. Kumar, M., Vaishya, R.O., Suri, N.M., Manna, A.: An experimental investigation of surface characterization for zirconia ceramic using electrochemical discharge machining process. Arab. J. Sci. Eng. (2020). https://doi.org/10.1007/s13369-020-05059-4

    Article  Google Scholar 

  33. Jain, V.K., Dixit, P.M., Pandey, P.M.: On the analysis of the electrochemical spark machining process. Int. J. Mach. Tools Manuf. 39, 165–186 (1999). https://doi.org/10.1016/S0890-6955(98)00010-8

    Article  Google Scholar 

  34. Kumar, M., Vaishya, RO., Suri NM.: (2019) Optimization of process parameters for electro chemical discharge machining : a review. 54:423–428

  35. Oza AD., Kumar A., Badheka V., et al: (2021) Quartz micro-machining using wire electrochemical spark machining process. In: Advances in Manufacturing Processes Select Proceedings of RAM 2020. Springer, Singapore, pp 95–109

  36. Bhuyan, B.K., Yadava, V.: Experimental modeling and multi-objective optimization of traveling wire electrochemical spark machining (TW-ECSM) process. J. Mech. Sci. Technol. 27, 2467–2476 (2013). https://doi.org/10.1007/s12206-013-0632-7

    Article  Google Scholar 

  37. Singh, J., Vaishya, R., Kumar, M.: Fabrication of micro features on quartz glass using developed WECDM setup. ARPN J. Eng. Appl. Sci. 14, 725–731 (2019)

    Google Scholar 

  38. Bhattacharyya B.: (2015) Electrochemical micromachining for nanofabrication, MEMS and nanotechnology

  39. Oza, A.D., Kumar, A., Badheka, V., et al.: Improvement of the machining performance of the TW-ECDM process using magnetohydrodynamics (MHD) on quartz material. Materials (Basel) 14, 2377 (2021). https://doi.org/10.3390/ma14092377

    Article  Google Scholar 

  40. Oza, A.D., Kumar, A., Badheka, V.: Improving quartz micro-machining performance by magnetohydrodynamic and zinc-coated assisted traveling wire-electrochemical discharge machining process. Mater. Today Proc. 28, 970–976 (2020). https://doi.org/10.1016/j.matpr.2019.12.334

    Article  Google Scholar 

  41. Bhuyan BK., Yadava V.: (2012) Machining characteristics of borosillicate glass using travelling wire electro-chemical spark machining (Tw-Escm ) Process. 571–578

  42. Bhuyan, B.K., Yadava, V.: Experimental study of traveling wire electrochemical spark machining of borosilicate glass. Mater. Manuf. Process 29, 298–304 (2014). https://doi.org/10.1080/10426914.2013.852216

    Article  Google Scholar 

  43. Panda, M.C., Yadava, V.: Finite element prediction of material removal rate due to traveling wire electrochemical spark machining. Int. J. Adv. Manuf. Technol. 45, 506–520 (2009). https://doi.org/10.1007/s00170-009-1992-0

    Article  Google Scholar 

  44. Banker, K.S., Oza, A.D., Dave, R.B.: Performance capabilities of EDM machining using aluminum, brass and copper for AISI 304L material. Int. J. Appl. Innov. Eng. Manag. 2, 186–191 (2013)

    Google Scholar 

  45. Verma, S., Satsangi, P.S., Chattopadhyay, K.D.: Enhancing process capabilities of electric discharge machining for nonconductive ceramics. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 234, 2402–2416 (2020). https://doi.org/10.1177/0954406220905867

    Article  Google Scholar 

  46. Bindu Madhavi, J., Hiremath, S.S.: Machining of micro-holes on borosilicate glass using micro-electro chemical discharge machining (µ-ECDM) and parametric optimisation. Adv. Mater. Process Technol. 5, 542–557 (2019). https://doi.org/10.1080/2374068X.2019.1636187

    Article  Google Scholar 

  47. Elhami, S., Razfar, M.R.: Application of nano electrolyte in the electrochemical discharge machining process. Precis. Eng. 64, 34–44 (2020). https://doi.org/10.1016/j.precisioneng.2020.03.010

    Article  Google Scholar 

  48. Arab, J., Dixit, P.: Influence of tool electrode feed rate in the electrochemical discharge drilling of a glass substrate. Mater. Manuf. Process 00, 1–12 (2020). https://doi.org/10.1080/10426914.2020.1784936

    Article  Google Scholar 

  49. Rathore, R.S., Dvivedi, A.: Sonication of tool electrode for utilizing high discharge energy during ECDM. Mater. Manuf. Process 35, 415–429 (2020). https://doi.org/10.1080/10426914.2020.1718699

    Article  Google Scholar 

  50. Antil, P.: Modelling and multi-objective optimization during ECDM of silicon carbide reinforced epoxy composites. Silicon 12, 275–288 (2020). https://doi.org/10.1007/s12633-019-00122-8

    Article  Google Scholar 

  51. Pu, Y., Tong, H., Li, J., et al.: Micro-SACE scanning process with different tool-surface roughness. Mater. Manuf. Process 35, 1181–1187 (2020). https://doi.org/10.1080/10426914.2020.1762209

    Article  Google Scholar 

  52. Antil, P., Kumar Antil, S., Prakash, C., et al.: Multi-objective optimization of drilling parameters for orthopaedic implants. Meas Control (United Kingdom) (2020). https://doi.org/10.1177/0020294020947126

    Article  Google Scholar 

  53. Bhuyan, B.K., Yadava, V.: Experimental modelling and multi-response optimization of travelling wire electrochemical spark machining of Pyrex glass. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 228, 902–916 (2014). https://doi.org/10.1177/0954405413514745

    Article  Google Scholar 

  54. Mallick, B., Sarkar, B.R., Doloi, B., Bhattacharyya, B.: Analysis on the effect of ECDM process parameters during micro-machining of glass using genetic algorithm. J. Mech. Eng. Sci. 12, 3942–3960 (2018). https://doi.org/10.15282/jmes.12.3.2018.13.0344

    Article  Google Scholar 

  55. Vaishya, R.O., Oza, A.D., Gupta, A.: Multiple Parameter Optimization by Wire Electrochemical Discharge Machining Process on Quartz Glass. In: Dave, H.K., Nedelcu, D. (eds.) Advances in Manufacturing Processes: Select Proceedings of RAM 2020, pp. 71–86. Springer Singapore, Singapore (2021). https://doi.org/10.1007/978-981-15-9117-4_6

    Chapter  Google Scholar 

  56. Jain NK., Laubscher RF.: (2016) Springer Briefs in Applied Sciences and Hybrid Machining Processes Perspectives on Machining And Finishing

  57. Oza, A.D., Kumar, A., Badheka, V., Arora, A.: Traveling wire electrochemical discharge machining (TW-ECDM) of Quartz using zinc coated brass wire: Investigations on material removal rate and kerf width characteristics. Silicon 11, 2873–2884 (2019). https://doi.org/10.1007/s12633-019-0070-y

    Article  Google Scholar 

  58. Gupta, P.K., Dvivedi, A., Kumar, P.: Effect of pulse duration on quality characteristics of blind hole drilled in glass by ECDM. Mater. Manuf. Process 31, 1740–1748 (2016). https://doi.org/10.1080/10426914.2015.1103857

    Article  Google Scholar 

  59. Oza AD., Kumar A., Badheka V.: (2019) Micro-Machining Characteristics of Quartz Using Travelling Wire-Electrochemical Discharge Machining (TW-ECDM) Process. In: International Conference on Precision, Meso, Micro and Nano Engineering (Copen-11)

  60. Liao, H.C.: Multi-response optimization using weighted principal component. Int. J. Adv. Manuf. Technol. 27, 720–725 (2006). https://doi.org/10.1007/s00170-004-2248-7

    Article  Google Scholar 

  61. Gauri, S.K., Chakraborty, S.: Optimisation of multiple responses for WEDM processes using weighted principal components. Int. J. Adv. Manuf. Technol. 40, 1102–1110 (2009). https://doi.org/10.1007/s00170-008-1429-1

    Article  Google Scholar 

  62. Gandhi, Prasanna, Bhole, Kiran: Characterization of “bulk lithography” process for fabrication of three-dimensional microstructures. J. Micro Nano-Manuf. (2013). https://doi.org/10.1115/1.4025461

    Article  Google Scholar 

  63. Bhole, B., Ekshinge, K., Gandhi, S.: (2014) fabrication of continuously varying thickness micro-cantilever using bulk lithography process. In: Proceedings of the ASME 2014 International Manufacturing Science and Engineering Conference collocated with the JSME 2014 International Conference on Materials and Processing and the 42nd North American Manufacturing Research Conference. Volume 1: Materials; Micro and Nano Technologies; Properties, Applications and Systems; Sustainable Manufacturing. Detroit, Michigan, USA. June 9–13, 2014. V001T01A009. ASME. https://doi.org/10.1115/MSEC2014-4041

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ankit D. Oza.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saxena, R., Mandal, A., Chattopdhya, S. et al. Experimental investigation of electrochemical discharge drilling (ECDM-D) performance characteristics for N-BK7 glass material. Int J Interact Des Manuf (2022). https://doi.org/10.1007/s12008-022-01057-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12008-022-01057-y

Keywords

Navigation