Log in

Thermal analysis for improvement of mechanical properties in fused filament fabricated parts

  • Original Paper
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

Additive manufacturing techniques are widely used in the present manufacturing era because of their ability to manufacture intricate products. Fused filament fabrication (FFF) is one of the most commonly adopted additive manufacturing technology, which involves the extrusion of the semi-solid polymer through the nozzle to be deposited in layers to form the part. In FFF, the polymer melt being deposited, forms the bonds with the neighboring pre-deposited melt during the part fabrication. The pre-deposited melt is at the low temperature compared to the polymer melt extruding out of the nozzle; hence the heat transfer occurs due to temperature gradient by the mode of conduction and convection. The commercialization of the FFF technology in a wide range of industrial applications still seems to be constrained due to several drawbacks such as insufficient mechanical properties, poor surface quality, and low dimensional accuracy. The grade of FFF-produced products is affected by various process parameters, for example, layer thickness, build orientation, raster width, or print speed. In FFF, process parameters are optimized to improve the quality of the final printed part. The cost of post-processing is also reduced as a result of parameter optimization. In this study, the influence of the convection coefficient on bond formation was investigated, and a model for predicting bond size in terms of convection coefficient is discussed for a given set of parameters. This work also aims to study the effects of thermal properties on neck formation and the effects of neck formation on strength, surface finish, and dimensional accuracy of the printed parts. In addition, this study reveals the problems and difficulties found in previous works, potential future scope in this area has been analyzed, and new research approaches are suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44
Fig. 45
Fig. 46
Fig. 47
Fig. 48
Fig. 49
Fig. 50
Fig. 51
Fig. 52
Fig. 53
Fig. 54
Fig. 55
Fig. 56
Fig. 57
Fig. 58
Fig. 59
Fig. 60
Fig. 61
Fig. 62

Similar content being viewed by others

References

  1. Bellehumeur, C., Li, L., Sun, Q., Gu, P.: Modeling of bond formation between polymer filaments in the fused deposition modeling process. J. Manuf. Process. 6, 170–178 (2004). https://doi.org/10.1016/S1526-6125(04)70071-7

    Article  Google Scholar 

  2. Ravi, A.K., Deshpande, A., Hsu, K.H.: An in-process laser localized pre-deposition heating approach to inter-layer bond strengthening in extrusion based polymer additive manufacturing. J. Manuf. Process. 24, 179–185 (2016). https://doi.org/10.1016/j.jmapro.2016.08.007

    Article  Google Scholar 

  3. Gurrala, P.K., Regalla, S.P.: Part strength evolution with bonding between filaments in fused deposition modelling: this paper studies how coalescence of filaments contributes to the strength of final FDM part. Virtual Phys. Prototyp. 9, 141–149 (2014). https://doi.org/10.1080/17452759.2014.913400

    Article  Google Scholar 

  4. Chacón, J.M., Caminero, M.A., García-Plaza, E., Núñez, P.J.: Additive manufacturing of PLA structures using fused deposition modelling: effect of process parameters on mechanical properties and their optimal selection. Mater. Des. 124, 143–157 (2017). https://doi.org/10.1016/j.matdes.2017.03.065

    Article  Google Scholar 

  5. Turner, B.N., Strong, R., Gold, S.A.: A review of melt extrusion additive manufacturing processes: I. Process design and modeling. Rapid Prototyp. J. 20, 192–204 (2014). https://doi.org/10.1108/RPJ-01-2013-0012

    Article  Google Scholar 

  6. Rao, Y., Wei, N., Yao, S., Wang, K., Peng, Y.: A process-structure-performance modeling for thermoplastic polymers via material extrusion additive manufacturing. Addit. Manuf. 39, 101857 (2021). https://doi.org/10.1016/j.addma.2021.101857

    Article  Google Scholar 

  7. Krishnanand, S., Soni, S., Nayak, A., Taufik, M.: Generation of tool path in fused filament fabrication. In: Lect. Notes Mech. Eng., Springer Science and Business Media Deutschland GmbH, 2021: pp. 153–161. https://doi.org/10.1007/978-981-16-3033-0_14

  8. Kishore, V., A**jeru, C., Nycz, A., Post, B., Lindahl, J., Kunc, V., Duty, C.: Infrared preheating to improve interlayer strength of big area additive manufacturing (BAAM) components. Addit. Manuf. 14, 7–12 (2017). https://doi.org/10.1016/j.addma.2016.11.008

    Article  Google Scholar 

  9. Tamburrino, F., Barone, S., Paoli, A., Razionale, A.V.: Post-processing treatments to enhance additively manufactured polymeric parts: a review. Virtual Phys. Prototyp. 16, 218–251 (2021). https://doi.org/10.1080/17452759.2021.1917039

    Article  Google Scholar 

  10. Lavecchia, F., Guerra, M.G., Galantucci, L.M.: Chemical vapor treatment to improve surface finish of 3D printed polylactic acid (PLA) parts realized by fused filament fabrication. Prog. Addit. Manuf. 7, 65–75 (2022). https://doi.org/10.1007/s40964-021-00213-2

    Article  Google Scholar 

  11. Vaezi, M., Yang, S.: Extrusion-based additive manufacturing of PEEK for biomedical applications. Virtual Phys. Prototyp. 10, 123–135 (2015). https://doi.org/10.1080/17452759.2015.1097053

    Article  Google Scholar 

  12. Ngo, T.D., Kashani, A., Imbalzano, G., Nguyen, K.T.Q., Hui, D.: Additive manufacturing (3D printing): a review of materials, methods, applications and challenges. Compos. Part B Eng. 143, 172–196 (2018). https://doi.org/10.1016/j.compositesb.2018.02.012

    Article  Google Scholar 

  13. Podroužek, J., Marcon, M., Ninčević, K., Wan-Wendner, R.: Bio-inspired 3D infill patterns for additive manufacturing and structural applications. Materials (Basel). 12, 499 (2019). https://doi.org/10.3390/ma12030499

    Article  Google Scholar 

  14. Cholleti, E.R., Gibson, I.: ABS nano composite materials in additive manufacturing. IOP Conf. Ser. Mater. Sci. Eng. (2018). https://doi.org/10.1088/1757-899X/455/1/012038

    Article  Google Scholar 

  15. Serdeczny, M.P., Comminal, R., Pedersen, D.B., Spangenberg, J.: Numerical simulations of the mesostructure formation in material extrusion additive manufacturing. Addit. Manuf. 28, 419–429 (2019). https://doi.org/10.1016/j.addma.2019.05.024

    Article  Google Scholar 

  16. Kim, M.K., Lee, I.H., Kim, H.C.: Effect of fabrication parameters on surface roughness of FDM parts. Int. J. Precis. Eng. Manuf. 19, 137–142 (2018). https://doi.org/10.1007/s12541-018-0016-0

    Article  Google Scholar 

  17. Sun, Q., Rizvi, G.M., Bellehumeur, C.T., Gu, P.: Effect of processing conditions on the bonding quality of FDM polymer filaments. Rapid Prototyp. J. 14, 72–80 (2008). https://doi.org/10.1108/13552540810862028

    Article  Google Scholar 

  18. Li, L., Sun, Q., Bellehumeur, C., Gu, P.: Investigation of bond formation in FDM process investigation of bond formation in FDM process. Trans. North Am. Manuf. Res. Inst. SME. 31, 400–407 (2019)

    Google Scholar 

  19. Bhalodi, D.V., Zalavadiya, K.S., Gurrala, P.K.: Parametric study to predict the bond formation in FDM process. Int. J. Mater. Mech. Manuf. 6, 313–316 (2018)

    Google Scholar 

  20. Syrlybayev, D., Zharylkassyn, B., Seisekulova, A., Akhmetov, M., Perveen, A., Talamona, D.: Optimisation of strength properties of FDM printed parts—a critical review. Polymers (Basel). 13, 1587 (2021). https://doi.org/10.3390/polym13101587

    Article  Google Scholar 

  21. Dey, A., Yodo, N.: A systematic survey of FDM process parameter optimization and their influence on part characteristics. J. Manuf. Mater. Process. 3, 64 (2019). https://doi.org/10.3390/jmmp3030064

    Article  Google Scholar 

  22. Garzon-Hernandez, S., Garcia-Gonzalez, D., Jérusalem, A., Arias, A.: Design of FDM 3D printed polymers: an experimental-modelling methodology for the prediction of mechanical properties. Mater. Des. 188, 108414 (2020). https://doi.org/10.1016/j.matdes.2019.108414

    Article  Google Scholar 

  23. Conley, W.H., Deferrari, R.J.: Principles and applications. J. Higher Educ. 23, 225 (1952). https://doi.org/10.2307/1976787

    Article  Google Scholar 

  24. Rodríguez, J.F., Thomas, J.P., Renaud, J.E.: Mechanical behavior of acrylonitrile butadiene styrene (ABS) fused deposition materials. Experimental investigation. Rapid Prototyp. J. 7, 148–158 (2001). https://doi.org/10.1108/13552540110395547

    Article  Google Scholar 

  25. Dhinesh, S.K., Arun Prakash, S., Senthil Kumar, K.L., Megalingam, A.: Study on flexural and tensile behavior of PLA, ABS and PLA-ABS materials. Mater. Today Proc. (2021). https://doi.org/10.1016/j.matpr.2020.03.546

    Article  Google Scholar 

  26. Wang, P., Zou, B., Ding, S.: Modeling of surface roughness based on heat transfer considering diffusion among deposition filaments for FDM 3D printing heat-resistant resin. Appl. Therm. Eng. 161, 114064 (2019). https://doi.org/10.1016/j.applthermaleng.2019.114064

    Article  Google Scholar 

  27. Raju, T.N., Ramach, V., Raju, R.: An experimental investigation on surface quality and dimensional accuracy of FDM components, (n.d.). http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.670.108 (accessed May 26, 2022).

  28. Popescu, D., Zapciu, A., Amza, C., Baciu, F., Marinescu, R.: FDM process parameters influence over the mechanical properties of polymer specimens: a review. Polym. Test. 69, 157–166 (2018). https://doi.org/10.1016/j.polymertesting.2018.05.020

    Article  Google Scholar 

  29. Yin, J., Lu, C., Fu, J., Huang, Y., Zheng, Y.: Interfacial bonding during multi-material fused deposition modeling (FDM) process due to inter-molecular diffusion. Mater. Des. 150, 104–112 (2018). https://doi.org/10.1016/j.matdes.2018.04.029

    Article  Google Scholar 

  30. Ouballouch, A., Lasri, L., Ouahmane, I., El Alaiji, R., Sallaou, M., Ettaqi, S.: Optimization of PLA parts manufactured by the Fused Deposition Modeling Technology. In: 2018 IEEE Int. Conf. Technol. Manag. Oper. Decis. ICTMOD 2018, Institute of Electrical and Electronics Engineers Inc., 2018;288–292. https://doi.org/10.1109/ITMC.2018.8691133

  31. Jain, P.K., Pandey, P.M., Rao, P.V.M.: Experimental investigations for improving part strength in selective laser sintering. Virtual Phys. Prototyp. 3, 177–188 (2008). https://doi.org/10.1080/17452750802065893

    Article  Google Scholar 

  32. Tao, Y., Wang, H., Li, Z., Li, P., Shi, S.Q.: Development and application ofwood flour-filled polylactic acid composite filament for 3d printing. Materials (Basel) (2017). https://doi.org/10.3390/ma10040339

    Article  Google Scholar 

  33. Vanaei, H., Shirinbayan, M., Deligant, M., Raissi, K., Fitoussi, J., Khelladi, S., Tcharkhtchi, A.: Influence of process parameters on thermal and mechanical properties of <scp>polylactic acid</scp> fabricated by fused filament fabrication. Polym. Eng. Sci. 60, 1822–1831 (2020). https://doi.org/10.1002/pen.25419

    Article  Google Scholar 

  34. Kuznetsov, V., Solonin, A., Urzhumtsev, O., Schilling, R., Tavitov, A.: Strength of PLA components fabricated with fused deposition technology using a desktop 3D printer as a function of geometrical parameters of the process. Polymers (Basel). 10, 313 (2018). https://doi.org/10.3390/polym10030313

    Article  Google Scholar 

  35. Rodríguez-Panes, A., Claver, J., Camacho, A.: The influence of manufacturing parameters on the mechanical behaviour of PLA and ABS pieces manufactured by FDM: a comparative analysis. Materials (Basel). 11, 1333 (2018). https://doi.org/10.3390/ma11081333

    Article  Google Scholar 

  36. Aloyaydi, B., Sivasankaran, S., Mustafa, A.: Investigation of infill-patterns on mechanical response of 3D printed poly-lactic-acid. Polym. Test. 87, 106557 (2020). https://doi.org/10.1016/j.polymertesting.2020.106557

    Article  Google Scholar 

  37. Polylactic Acid: PLA Biopolymer Technology and Applications | Request PDF, (n.d.). https://www.researchgate.net/publication/286177523_Polylactic_Acid_PLA_Biopolymer_Technology_and_Applications (accessed May 20, 2022)

  38. Yan, Y., Zhang, R., Hong, G., Yuan, X.: Research on the bonding of material paths in melted extrusion modeling. Mater. Des. 21, 93–99 (2000). https://doi.org/10.1016/s0261-3069(99)00058-8

    Article  Google Scholar 

  39. Triyono, J., Sukanto, H., Saputra, R.M., Smaradhana, D.F.: The effect of nozzle hole diameter of 3D printing on porosity and tensile strength parts using polylactic acid material. Open Eng. 10, 762–768 (2020). https://doi.org/10.1515/eng-2020-0083

    Article  Google Scholar 

  40. Chua, B.-L., Baek, S.-H., Park, K., Ahn, D.-G.: Numerical investigation of deposition characteristics of PLA on an ABS plate using a material extrusion process. Materials (Basel). 14, 3404 (2021). https://doi.org/10.3390/ma14123404

    Article  Google Scholar 

  41. Abeykoon, C., Sri-Amphorn, P., Fernando, A.: Optimization of fused deposition modeling parameters for improved PLA and ABS 3D printed structures. Int. J. Light. Mater. Manuf. 3, 284–297 (2020). https://doi.org/10.1016/j.ijlmm.2020.03.003

    Article  Google Scholar 

  42. Partain, S.C.: Fused deposition modeling with localized pre-deposition heating using forced air, Montana State University - Bozeman, College of Engineering, 2007. https://scholarworks.montana.edu/xmlui/bitstream/1/2016/1/PartainS0507.pdf (accessed May 26, 2022)

  43. Bellini, A., Güçeri, S.: Mechanical characterization of parts fabricated using fused deposition modeling. Rapid Prototyp. J. 9, 252–264 (2003). https://doi.org/10.1108/13552540310489631

    Article  Google Scholar 

  44. Yardimci, M.A., Güçeri, S.: Conceptual framework for the thermal process modelling of fused deposition. Rapid Prototyp. J. 2, 26–31 (1996). https://doi.org/10.1108/13552549610128206

    Article  Google Scholar 

  45. Zmeskal, O., Marackova, L., Lapcikova, T., Mencik, P., Prikryl, R.: Thermal properties of samples prepared from polylactic acid by 3D printing, in: AIP Conf. Proc., American Institute of Physics Inc., 2020;020022. https://doi.org/10.1063/5.0033857

  46. Jiang, K.Y., Gu, Y.H.: Controlling parameters for polymer melting and extrusion in FDM. Key Eng. Mater. (2004). https://doi.org/10.4028/www.scientific.net/kem.259-260.667

    Article  Google Scholar 

  47. Vollmer, M., Möllmann, K.-P.: Some basic concepts of heat transfer. 2010. https://doi.org/10.1002/9783527630868.ch4

  48. Pokluda, O., Bellehumeur, C.T., Vlachopoulos, J.: Modification of Frenkel’s model for sintering. AIChE J. 43, 3253–3256 (1997). https://doi.org/10.1002/aic.690431213

    Article  Google Scholar 

  49. Sood, A.K., Ohdar, R.K., Mahapatra, S.S.: Parametric appraisal of mechanical property of fused deposition modelling processed parts. Mater. Des. 31, 287–295 (2010). https://doi.org/10.1016/j.matdes.2009.06.016

    Article  Google Scholar 

  50. Nickel, A.H., Barnett, D.M., Prinz, F.B.: Thermal stresses and deposition patterns in layered manufacturing. Mater. Sci. Eng. A. 317, 59–64 (2001). https://doi.org/10.1016/S0921-5093(01)01179-0

    Article  Google Scholar 

  51. Anitha, R., Arunachalam, S., Radhakrishnan, P.: Critical parameters influencing the quality of prototypes in fused deposition modelling. J. Mater. Process. Technol. (2001). https://doi.org/10.1016/S0924-0136(01)00980-3

    Article  Google Scholar 

  52. Coogan, T.J., Kazmer, D.O.: Bond and part strength in fused deposition modeling. Rapid Prototyp. J. 23, 414–422 (2017). https://doi.org/10.1108/RPJ-03-2016-0050

    Article  Google Scholar 

  53. Shofner, M.L., Lozano, K., Rodríguez-Macías, F.J., Barrera, E.V.: Nanofiber-reinforced polymers prepared by fused deposition modeling. J. Appl. Polym. Sci. 89, 3081–3090 (2003). https://doi.org/10.1002/app.12496

    Article  Google Scholar 

  54. Sezer, H.K., Eren, O.: FDM 3D printing of MWCNT re-inforced ABS nano-composite parts with enhanced mechanical and electrical properties. J. Manuf. Process. 37, 339–347 (2019). https://doi.org/10.1016/j.jmapro.2018.12.004

    Article  Google Scholar 

  55. Dul, S., Fambri, L., Pegoretti, A.: Filaments production and fused deposition modelling of ABS/carbon nanotubes composites. Nanomaterials (2018). https://doi.org/10.3390/nano8010049

    Article  Google Scholar 

  56. Bardot, M., Schulz, M.D.: Biodegradable Poly(Lactic Acid) nanocomposites for fused deposition modeling 3D printing. Nanomaterials 10, 2567 (2020). https://doi.org/10.3390/nano10122567

    Article  Google Scholar 

  57. Coppola, B., Cappetti, N., Di Maio, L., Scarfato, P., Incarnato, L.: 3D printing of PLA/clay nanocomposites: influence of printing temperature on printed samples properties. Materials (Basel). 11, 1947 (2018). https://doi.org/10.3390/ma11101947

    Article  Google Scholar 

  58. Qiu, D., Langrana, N.A.: Void eliminating toolpath for extrusion-based multi-material layered manufacturing. Rapid Prototyp. J. 8, 38–45 (2002). https://doi.org/10.1108/13552540210413293

    Article  Google Scholar 

  59. Mamaghani Shishavan, S., Azdast, T., Rash Ahmadi, S.: Investigation of the effect of nanoclay and processing parameters on the tensile strength and hardness of injection molded Acrylonitrile Butadiene Styrene-organoclay nanocomposites. Mater. Des. 58, 527–534 (2014). https://doi.org/10.1016/j.matdes.2014.02.014

    Article  Google Scholar 

  60. Pavlidou, S., Papaspyrides, C.D.: A review on polymer-layered silicate nanocomposites. Prog. Polym. Sci. 33, 1119–1198 (2008). https://doi.org/10.1016/j.progpolymsci.2008.07.008

    Article  Google Scholar 

  61. Francis, V., Jain, P.K.: Experimental investigations on fused deposition modelling of polymer-layered silicate nanocomposite. Virtual Phys. Prototyp. 11, 109–121 (2016). https://doi.org/10.1080/17452759.2016.1172431

    Article  Google Scholar 

  62. Rajpurohit, S.R., Dave, H.K.: Effect of process parameters on tensile strength of FDM printed PLA part. Rapid Prototyp. J. 24, 1317–1324 (2018). https://doi.org/10.1108/RPJ-06-2017-0134

    Article  Google Scholar 

  63. Hernandez, R., Slaughter, D., Whaley, D., Tate, J., Asiabanpour, B., Analyzing the tensile, compressive, and flexural properties of 3D printed ABS P430 plastic based on printing orientation using fused deposition modeling, Solid Free. Fabr. 2016 Proc. 27th Annu. Int. Solid Free. Fabr. Symp. - An Addit. Manuf. Conf. SFF 2016. 2016;939–950

  64. Ziemian, S., Okwara, M., Ziemian, C.W.: Tensile and fatigue behavior of layered acrylonitrile butadiene styrene. Rapid Prototyp. J. 21, 270–278 (2015). https://doi.org/10.1108/RPJ-09-2013-0086

    Article  Google Scholar 

  65. Jain, P.K., Pandey, P.M., Rao, P.V.M.: Effect of delay time on part strength in selective laser sintering. Int. J. Adv. Manuf. Technol. 43, 117–126 (2009). https://doi.org/10.1007/S00170-008-1682-3

    Article  Google Scholar 

  66. Garg, A., Bhattacharya, A.: An insight to the failure of FDM parts under tensile loading: finite element analysis and experimental study. Int. J. Mech. Sci. 120, 225–236 (2017). https://doi.org/10.1016/j.ijmecsci.2016.11.032

    Article  Google Scholar 

  67. Aliheidari, N., Tripuraneni, R., Ameli, A., Nadimpalli, S.: Fracture resistance measurement of fused deposition modeling 3D printed polymers. Polym. Test. 60, 94–101 (2017). https://doi.org/10.1016/j.polymertesting.2017.03.016

    Article  Google Scholar 

  68. (PDF) Prediction of neck growth due to inter and intra-layer bonding for high strength parts in additive manufacturing, (n.d.). https://www.researchgate.net/publication/264545454_Prediction_of_Neck_Growth_due_to_Inter_and_Intra-Layer_Bonding_for_High_Strength_Parts_in_Additive_Manufacturing (accessed May 20, 2022)

  69. Chadha, A., Ul Haq, M.I., Raina, A., Singh, R.R., Penumarti, N.B., Bishnoi, M.S.: Effect of fused deposition modelling process parameters on mechanical properties of 3D printed parts. World J. Eng. 16, 550–559 (2019). https://doi.org/10.1108/WJE-09-2018-0329

    Article  Google Scholar 

  70. Ćwikła, G., Grabowik, C., Kalinowski, K., Paprocka, I., Ociepka, P.: The influence of printing parameters on selected mechanical properties of FDM/FFF 3D-printed parts. In: IOP Conf. Ser. Mater. Sci. Eng., Institute of Physics Publishing, 2017;012033. https://doi.org/10.1088/1757-899X/227/1/012033

  71. Kulkarni, P., Dutta, D.: Deposition strategies and resulting part stiffnesses in fused deposition modeling. J. Manuf. Sci. Eng. Trans. ASME. 121, 93–103 (1999). https://doi.org/10.1115/1.2830582

    Article  Google Scholar 

  72. Ang, K.C., Leong, K.F., Chua, C.K., Chandrasekaran, M.: Investigation of the mechanical properties and porosity relationships in fused deposition modelling-fabricated porous structures. Rapid Prototyp. J. 12, 100–105 (2006). https://doi.org/10.1108/13552540610652447

    Article  Google Scholar 

  73. Zhang, Y., Chou, K.: A parametric study of part distortions in fused deposition modelling using three-dimensional finite element analysis. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 222, 959–968 (2008). https://doi.org/10.1243/09544054JEM990

    Article  Google Scholar 

  74. Radhwan, H., Shayfull, Z., Abdellah, A.E.H., Irfan, A.R., Kamarudin, K.: Optimization parameter effects on the strength of 3D-printing process using Taguchi method. In: AIP Conf. Proc., American Institute of Physics Inc., 2019;020154. https://doi.org/10.1063/1.5118162

  75. Vicente, C.M.S., Martins, T.S., Leite, M., Ribeiro, A., Reis, L.: Influence of fused deposition modeling parameters on the mechanical properties of ABS parts. Polym. Adv. Technol. 31, 501–507 (2020). https://doi.org/10.1002/pat.4787

    Article  Google Scholar 

  76. Croccolo, D., De Agostinis, M., Olmi, G.: Experimental characterization and analytical modelling of the mechanical behaviour of fused deposition processed parts made of ABS-M30. Comput. Mater. Sci. 79, 506–518 (2013). https://doi.org/10.1016/j.commatsci.2013.06.041

    Article  Google Scholar 

  77. Reddy, B.V., Reddy, N.V., Ghosh, A.: Fused deposition modelling using direct extrusion. Virtual Phys. Prototyp. 2, 51–60 (2007). https://doi.org/10.1080/17452750701336486

    Article  Google Scholar 

  78. A Visual Tool to Improve Layered Manufacturing Part Quality, (n.d.). https://repositories.lib.utexas.edu/handle/2152/73466 (accessed May 26, 2022)

  79. Sahu, R.K., Mahapatra, S.S., Sood, A.K.: A study on dimensional accuracy of fused deposition modeling (FDM) processed parts using fuzzy logic. J. Manuf. Sci. Prod. 13, 183–197 (2014). https://doi.org/10.1515/jmsp-2013-0010

    Article  Google Scholar 

  80. Bhalodi, D., Zalavadiya, K., Gurrala, P.K.: Influence of temperature on polymer parts manufactured by fused deposition modeling process. J. Brazilian Soc. Mech. Sci. Eng. 41, 1–11 (2019). https://doi.org/10.1007/s40430-019-1616-z

    Article  Google Scholar 

  81. Akande, S.O.: Dimensional accuracy and surface finish optimization of fused deposition modelling parts using desirability function analysis. Int. J. Eng. Res. (2015). https://doi.org/10.17577/ijertv4is040393

  82. Wang, T.M., **, J.T., **, Y.: A model research for prototype warp deformation in the FDM process. Int. J. Adv. Manuf. Technol. 33, 1087–1096 (2007). https://doi.org/10.1007/s00170-006-0556-9

    Article  Google Scholar 

  83. **aoyong, S., Liangcheng, C., Honglin, M., Peng, G., Zhanwei, B., Cheng, L.: Experimental analysis of high temperature PEEK materials on 3D printing test. In: Proc. - 9th Int. Conf. Meas. Technol. Mechatronics Autom. ICMTMA 2017, Institute of Electrical and Electronics Engineers Inc., 2017; 13–16. https://doi.org/10.1109/ICMTMA.2017.0012

  84. Tardif, X., Pignon, B., Boyard, N., Schmelzer, J.W.P., Sobotka, V., Delaunay, D., Schick, C.: Experimental study of crystallization of PolyEtherEtherKetone (PEEK) over a large temperature range using a nano-calorimeter. Polym. Test. 36, 10–19 (2014). https://doi.org/10.1016/j.polymertesting.2014.03.013

    Article  Google Scholar 

  85. Wu, W.Z., Geng, P., Zhao, J., Zhang, Y., Rosen, D.W., Zhang, H.B.: Manufacture and thermal deformation analysis of semicrystalline polymer polyether ether ketone by 3D printing. Mater. Res. Innov. 18, S5-12-S5-16 (2014). https://doi.org/10.1179/1432891714Z.000000000898

    Article  Google Scholar 

  86. Durgun, I., Ertan, R.: Experimental investigation of FDM process for improvement of mechanical properties and production cost. Rapid Prototyp. J. 20, 228–235 (2014). https://doi.org/10.1108/RPJ-10-2012-0091

    Article  Google Scholar 

  87. Jatti, V.S., Jatti, S.V., Patel, A.P., Jatti, V.S.: A study on effect of fused deposition modeling process parameters on mechanical properties. Int. J. Sci. Technol. Res. 8, 689–693 (2019)

    Google Scholar 

  88. Garg, A., Bhattacharya, A., Batish, A.: Chemical vapor treatment of ABS parts built by FDM: analysis of surface finish and mechanical strength. Int. J. Adv. Manuf. Technol. 89, 2175–2191 (2017). https://doi.org/10.1007/s00170-016-9257-1

    Article  Google Scholar 

  89. Francis, V., Jain, P.K.: Investigation on the effect of surface modification of 3D printed parts by nanoclay and dimethyl ketone, Https://Doi.Org/https://doi.org/10.1080/10426914.2017.1401717. 2017;33:1080–1092. https://doi.org/10.1080/10426914.2017.1401717

  90. Frone, A.N., Batalu, D., Chiulan, I., Oprea, M., Gabor, A.R., Nicolae, C.-A., Raditoiu, V., Trusca, R., Panaitescu, D.M.: Morpho-structural, thermal and mechanical properties of PLA/PHB/cellulose biodegradable nanocomposites obtained by compression molding, extrusion, and 3D printing. Nanomaterials 10, 51 (2019). https://doi.org/10.3390/nano10010051

    Article  Google Scholar 

  91. Suh, C.H., Jung, Y.C., Kim, Y.S.: Effects of thickness and surface roughness on mechanical properties of aluminum sheets. J. Mech. Sci. Technol. 24, 2091–2098 (2010). https://doi.org/10.1007/s12206-010-0707-7

    Article  Google Scholar 

  92. Ahn, D., Kweon, J.H., Kwon, S., Song, J., Lee, S.: Representation of surface roughness in fused deposition modeling. J. Mater. Process. Technol. 209, 5593–5600 (2009). https://doi.org/10.1016/j.jmatprotec.2009.05.016

    Article  Google Scholar 

  93. Vasudevarao, B., Natarajan, D.P., Henderson, M.: Sensitivity of Rp surface finish to process, Solid Free. Fabr. Proc. 2000;251–258. http://prism.asu.edu/publications/papers/paper00_srpsfppv.pdf

  94. Ahn, D., Kim, H., Lee, S.: Surface roughness prediction using measured data and interpolation in layered manufacturing. J. Mater. Process. Technol. 209, 664–671 (2009). https://doi.org/10.1016/j.jmatprotec.2008.02.050

    Article  Google Scholar 

  95. Es-Said, O.S., Foyos, J., Noorani, R., Mendelson, M., Marloth, R., Pregger, B.A.: Effect of layer orientation on mechanical properties of rapid prototyped samples. Mater. Manuf. Process. 15, 107–122 (2000). https://doi.org/10.1080/10426910008912976

    Article  Google Scholar 

  96. Taufik, M., Jain, P.K.: Role of build orientation in layered manufacturing: a review. Int. J. Manuf. Technol. Manag. 27, 47–73 (2013). https://doi.org/10.1504/IJMTM.2013.058637

    Article  Google Scholar 

  97. Chennakesava, P. and Shivraj Narayan, Y.: Fused deposition modeling – insights. Int. Conf. Adv. Des. Manuf. 2014;1345–1350. https://www.researchgate.net/publication/269702639_Fused_Deposition_Modeling_-_Insights (accessed May 26, 2022).

  98. Boschetto, A., Giordano, V., Veniali, F.: 3D roughness profile model in fused deposition modelling. Rapid Prototyp. J. 19, 240–252 (2013). https://doi.org/10.1108/13552541311323254

    Article  Google Scholar 

  99. Ippolito, R., Iuliano, L., Gatto, A.: Benchmarking of rapid prototy** techniques in terms of dimensional accuracy and surface finish. CIRP Ann. - Manuf. Technol. 44, 157–160 (1995). https://doi.org/10.1016/S0007-8506(07)62296-3

    Article  Google Scholar 

  100. Gadelmawla, E.S., Koura, M.M., Maksoud, T.M.A., Elewa, I.M., Soliman, H.H.: Roughness parameters. J. Mater. Process. Technol. 123, 133–145 (2002). https://doi.org/10.1016/S0924-0136(02)00060-2

    Article  Google Scholar 

  101. Galantucci, L.M., Lavecchia, F., Percoco, G.: Experimental study aiming to enhance the surface finish of fused deposition modeled parts. CIRP Ann. - Manuf. Technol. 58, 189–192 (2009). https://doi.org/10.1016/j.cirp.2009.03.071

    Article  Google Scholar 

  102. Huang, B., Singamneni, S.: Raster angle mechanics in fused deposition modelling. J. Compos. Mater. 49, 363–383 (2015). https://doi.org/10.1177/0021998313519153

    Article  Google Scholar 

  103. Górski, F., Kuczko, W., Wichniarek, R.: Influence of process parameters on dimensional accuracy of parts manufactured using fused deposition modelling technology. Adv. Sci. Technol. Res. J. 7, 27–35 (2013). https://doi.org/10.5604/20804075.1062340

    Article  Google Scholar 

  104. Alafaghani, A., Qattawi, A., Alrawi, B., Guzman, A.: Experimental optimization of fused deposition modelling processing parameters: a design-for-manufacturing approach. In: Procedia Manuf., Elsevier B.V., 2017;791–803. https://doi.org/10.1016/j.promfg.2017.07.079

  105. Akhoundi, B., Behravesh, A.H.: Effect of filling pattern on the tensile and flexural mechanical properties of FDM 3D printed products. Exp. Mech. 59, 883–897 (2019). https://doi.org/10.1007/s11340-018-00467-y

    Article  Google Scholar 

  106. Luis Pérez, C.J.: Analysis of the surface roughness and dimensional accuracy capability of fused deposition modelling processes. Int. J. Prod. Res. 40, 2865–2881 (2002). https://doi.org/10.1080/00207540210146099

    Article  Google Scholar 

  107. Hanon, M.M., Zsidai, L., Ma, Q.: Accuracy investigation of 3D printed PLA with various process parameters and different colors. Mater. Today Proc. (2021). https://doi.org/10.1016/j.matpr.2020.12.1246

    Article  Google Scholar 

  108. Beniak, J., Križan, P., Šooš, L., Matuš, M.: Research on shape and dimensional accuracy of FDM produced parts. In: IOP Conf. Ser. Mater. Sci. Eng., Institute of Physics Publishing, 2019; 012030. https://doi.org/10.1088/1757-899X/501/1/012030

  109. Wang, C.C., Lin, T.W., Hu, S.S.: Optimizing the rapid prototy** process by integrating the Taguchi method with the Gray relational analysis. Rapid Prototyp. J. 13, 304–315 (2007). https://doi.org/10.1108/13552540710824814

    Article  Google Scholar 

  110. Nidagundi, V.B., Keshavamurthy, R., Prakash, C.P.S.: Studies on parametric optimization for fused deposition modelling process. Mater. Today Proc. (2015). https://doi.org/10.1016/j.matpr.2015.07.097

    Article  Google Scholar 

  111. Bähr, F., Westkämper, E.: Correlations between influencing parameters and quality properties of components produced by fused deposition modeling. Procedia CIRP (2018). https://doi.org/10.1016/j.procir.2018.03.048

    Article  Google Scholar 

  112. D’Amico, A.A., Debaie, A., Peterson, A.M.: Effect of layer thickness on irreversible thermal expansion and interlayer strength in fused deposition modeling. Rapid Prototyp. J. 23, 943–953 (2017). https://doi.org/10.1108/RPJ-05-2016-0077

    Article  Google Scholar 

  113. Zhou, J.G., Herscovici, D., Chen, C.C.: Parametric process optimization to improve the accuracy of rapid prototyped stereolithography parts. Int. J. Mach. Tools Manuf. 40, 363–379 (2000). https://doi.org/10.1016/S0890-6955(99)00068-1

    Article  Google Scholar 

  114. Raghunath, N., Pandey, P.M.: Improving accuracy through shrinkage modelling by using Taguchi method in selective laser sintering. Int. J. Mach. Tools Manuf. 47, 985–995 (2007). https://doi.org/10.1016/j.ijmachtools.2006.07.001

    Article  Google Scholar 

Download references

Acknowledgements

The present work has been funded by the Science and Engineering Research Board- DST under its Start-up Research Grant (SRG) scheme [Grant number: SRG/2019/000943].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Taufik.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alam, M.A., Krishnanand, Patel, A. et al. Thermal analysis for improvement of mechanical properties in fused filament fabricated parts. Int J Interact Des Manuf 17, 603–635 (2023). https://doi.org/10.1007/s12008-022-00981-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12008-022-00981-3

Keywords

Navigation