Log in

Phosphorylated PVA coatings for corrosion protection of Mg AZ31 alloy

  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

In this paper, the influence of different amounts of phosphoric acid on the protective properties of phosphorylated PVA (PPVA) coatings on a Mg AZ31 alloy is investigated. PPVA coatings and free-standing films were prepared by dip-coating and casting, respectively, and characterized by scanning electron microscopy, Fourier transform infrared spectroscopy and swelling assays. The anticorrosion properties of the coatings were investigated by electrochemical impedance spectroscopy and potentiodynamic polarization, both in 3.5 wt% NaCl solution. The results show that |Z| values increase with the amount of H3PO4, reaching values on the order of 105 Ω cm2 for the coating with the highest amount of H3PO4 (0.100 PPVA). Additionally, this sample shows the lowest swelling degree (around 80%). Polarization tests demonstrate that all coatings significantly decrease jcorr (from 4.8 μA cm−2 to values around 0.3 μA cm−2) by means of a cathodic inhibition. These results make of PPVA coatings interesting water-based alternatives to polysaccharide coatings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Johari, NA, Alias, J, Zanurin, A, Mohamed, NS, Alang, NA, Zain, MZM, “Recent Progress of Self-Healing Coatings for Magnesium Alloys Protection.” J. Coat. Technol. Res., 19 757–774 (2022)

    CAS  Google Scholar 

  2. **e, Z, Yu, G, Li, T, Wu, Z, Hu, B, “Dynamic Behavior of Electroless Nickel Plating Reaction on Magnesium Alloys.” J. Coat. Technol. Res., 9 107–114 (2012)

    CAS  Google Scholar 

  3. Mahto, VK, Singh, AK, Malik, A, “Surface Modification Techniques of Magnesium-Based Alloys for Implant Applications.” J. Coat. Technol. Res., 20 433–455 (2023)

    CAS  Google Scholar 

  4. Fu, Q, Feng, M, Li, J, He, N, Li, W, Li, J, Yang, J, **, W, Li, W, Yu, Z, “Effects of Hydroxyapatite Coatings on Enhanced Corrosion Protection and Cytocompatibility of High-Purity Magnesium.” J. Coat. Technol. Res., 19 1757–1771 (2022)

    CAS  Google Scholar 

  5. Zhang, D, Peng, F, Liu, X, “Protection of Magnesium Alloys: From Physical Barrier Coating to Smart Self-Healing Coating.” J. Alloys Compd., 853 157010 (2021)

    CAS  Google Scholar 

  6. Zhang, Z-Q, Yang, Y-X, Li, J-A, Zeng, R-C, Guan, S-K, “Advances in Coatings on Magnesium Alloys for Cardiovascular Stents – A Review.” Bioact. Mater., 6 (12) 4729–4757 (2021)

    CAS  Google Scholar 

  7. Obot, IB, Onyeachu, IB, Kumar, AM, “Sodium Alginate: A Promising Biopolymer for Corrosion Protection of API X60 High Strength Carbon Steel in Saline Medium.” Carbohydr. Polym., 178 200–208 (2017)

    CAS  Google Scholar 

  8. Umoren, SA, Eduok, UM, “Application of Carbohydrate Polymers as Corrosion Inhibitors for Metal Substrates in Different Media: A Review.” Carbohydr. Polym., 140 314–341 (2016)

    CAS  Google Scholar 

  9. Verma, C, Quraishi, MA, Alfantazi, A, Rhee, KY, “Corrosion Inhibition Potential of Chitosan Based Schiff Bases: Design, Performance and Applications.” Int. J Biol. Macromol., 184 135–143 (2021)

    CAS  Google Scholar 

  10. Beraldo, CHM, Spinelli, A, Scharnagl, N, da Conceição, TF, “New Relations Between Modification Degree, Swelling and Impedance in Anticorrosion Chitosan-Derivative Coatings on Magnesium Alloy AZ31.” Carbohydr. Polym., 292 119617 (2022)

    CAS  Google Scholar 

  11. Muhamad, II, Selvakumaran, S, Lazim, NAM, “Designing Polymeric Nanoparticles for Targeted Drug Delivery System.” In: Seifalian, A, de Mel, A, Kalaskar, DM (eds.) Nanomedicine, pp. 287–313. One Central Press, Manchester (2014)

    Google Scholar 

  12. Filippi, M, Born, G, Chaaban, M, Scherberich, A, “Natural Polymeric Scaffolds in Bone Regeneration.” Front. Bioeng. Biotechnol., 8 474 (2020)

    Google Scholar 

  13. Salehi-Nik, N, Rezai, RM, Nazeman, P, Khojasteh, A, “Polymers for Oral and Dental Tissue Engineering.” In: Tayebi, L, Moharamzadeh, K (eds.) Biomaterials for Oral and Dental Tissue Engineering, pp. 25–46. Woodhead Publishing, Cambridge (2017)

    Google Scholar 

  14. Satoh, K, “Poly(Vinyl Alcohol) (PVA).” In: Kobayashi, S, Müllen, K (eds.) Encyclopedia of Polymeric Nanomaterials, pp. 1–6. Springer, Berlin, Heidelberg (2014)

    Google Scholar 

  15. Aslam, M, Kalyar, MA, Raza, ZA, “Polyvinyl Alcohol: A Review of Research Status and Use of Polyvinyl Alcohol Based Nanocomposites.” Polym. Eng. Sci., 58 (6) 2119–2132 (2018)

    CAS  Google Scholar 

  16. Kaviyarasu, S, Anandakumar, S, Vignesh, K, Rampradheep, GS, “Development of Inhibitor for the Corrosion Resistance in Steel Using Polyvinyl Alcohol.” Int. J. Sci. Technol. Res., 9 (2) 2888–2893 (2020)

    Google Scholar 

  17. Alaoui, K, El Kacimi, Y, Galai, M, Touir, R, Dahmani, K, Harfi, A, Touhami, ME, “Anti-corrosive Properties of Polyvinyl-Alcohol for Carbon Steel in Hydrochloric Acid Media: Electrochemical and Thermodynamic Investigation.” J. Mater. Environ. Sci., 7 (7) 2389–2403 (2016)

    CAS  Google Scholar 

  18. Umoren, SA, Ogbobe, O, Okafor, PC, Ebenso, EE, “Polyethylene Glycol and Polyvinyl Alcohol as Corrosion Inhibitors for Aluminium in Acidic Medium.” J. Appl. Polym. Sci., 105 (6) 3363–3370 (2007)

    CAS  Google Scholar 

  19. Hassannejad, H, Nouri, A, Soltani, S, Molavi, FK, “Study of Corrosion Behavior of the Biodegradable Chitosan-Polyvinyl Alcohol Coatings on AA8011 Aluminum Alloy.” Mater. Res. Express., 6 (5) 055312 (2019)

    CAS  Google Scholar 

  20. Zhang, X, Zhou, Y, Zhang, J, “In-Situ Reduced Graphene Oxide-Polyvinyl Alcohol Composite Coatings as Protective Layers on Magnesium Substrates.” Prog. Nat. Sci. Mater. Int., 27 (3) 326–328 (2017)

    CAS  Google Scholar 

  21. Zhang, J, Huang, Y, Wu, H, Geng, S, Wang, F, “Corrosion Protection Properties of an Environmentally Friendly Polyvinyl Alcohol Coating Reinforced by a Heating Treatment and Lignin Nanocellulose.” Prog. Org. Coat., 155 106224 (2021)

    CAS  Google Scholar 

  22. Firouzi, A, Del Gaudio, C, Lamastra, FR, Montesperelli, G, Bianco, A, “Electrospun Polymeric Coatings on Aluminum Alloy as a Straightforward Approach for Corrosion Protection.” J. Appl. Polym. Sci., 132 (2) 1–10 (2015)

    Google Scholar 

  23. Figueiredo, KCS, Alves, TLM, Borges, CP, “Poly(Vinyl Alcohol) Films Crosslinked by Glutaraldehyde Under Mild Conditions.” J. Appl. Polym. Sci., 111 (6) 3074–3080 (2009)

    CAS  Google Scholar 

  24. Bo, J, “Study on PVA Hydrogel Crosslinked by Epichlorohydrin.” J. Appl. Polym. Sci., 46 (5) 783–786 (1992)

    Google Scholar 

  25. Kudoh, Y, Kojima, T, Abe, M, Oota, M, Yamamoto, T, “Proton Conducting Membranes Consisting of Poly(Vinyl Alcohol) and Poly(Styrene Sulfonic Acid): Crosslinking of Poly(Vinyl Alcohol) With and Without Succinic Acid.” Solid State Ion., 253 189–194 (2013)

    CAS  Google Scholar 

  26. Rynkowska, E, Fatyeyeva, K, Marais, S, Kujawa, J, Kujawski, W, “Chemically and Thermally Crosslinked PVA-Based Membranes: Effect on Swelling and Transport Behavior.” Polymers, 11 (11) 1799 (2019)

    CAS  Google Scholar 

  27. Saat, AM, Johan, MR, “Effect of Phosphoric Acid Concentration on the Optical Properties of Partially Phosphorylated PVA Complexes.” Int. J. Polym. Sci., 2014 (2) 8 (2014)

    Google Scholar 

  28. Pupkevich, V, Glibin, V, Karamanev, D, “Phosphorylated Polyvinyl Alcohol Membranes for Redox Fe3+/H2 Flow Cells.” J. Power Sources, 228 300–307 (2013)

    CAS  Google Scholar 

  29. Datta, P, Chatterjee, J, Dhara, S, “Phosphate Functionalized and Lactic Acid Containing Graft Copolymer: Synthesis and Evaluation as Biomaterial for Bone Tissue Engineering Applications.” J. Biomater. Sci. Polym. Ed., 24 (6) 696–713 (2013)

    CAS  Google Scholar 

  30. Saat, AM, Latiff, NA, Yaakup, S, Johan, MR, “Synthesis and Characterisation of Composite Partially Phosphorylated Polyvinyl Alcohol-Aluminium Phosphate as Protective Coating.” Mater. Res. Innov., 18 (6) 310–313 (2014)

    Google Scholar 

  31. Kaseem, M, Hussain, T, Baek, SH, Ko, YG, “Formation of Stable Coral Reef-Like Structures via Self-Assembly of Functionalized Polyvinyl Alcohol for Superior Corrosion Performance of AZ31 Mg Alloy.” Mater. Des., 193 108823 (2020)

    CAS  Google Scholar 

  32. Chen, F, Liu, P, “Conducting Polyaniline Nanoparticles and Their Dispersion for Waterborne Corrosion Protection Coatings.” ACS Appl. Mater. Interfaces, 3 (7) 2694–2702 (2011)

    CAS  Google Scholar 

  33. Guo, R, Wang, J, Wang, H, Fei, G, Wang, C, Sun, L, Wallace, GG, “Engineering the Poly(Vinyl Alcohol)-Polyaniline Colloids for High-Performance Waterborne Alkyd Anticorrosion Coating.” Appl. Surf. Sci., 481 271–960 (2019)

    Google Scholar 

  34. Sun, B, Zou, J, “Poly(Vinyl Alcohol)-Based Polyelectrolyte Pervaporation Membranes.” Ann. N. Y. Acad. Sci., 984 (1) 386–400 (2003)

    CAS  Google Scholar 

  35. Pozzo, LY, da Conceição, TF, Spinelli, A, Scharnagl, N, Pires, ATN, “Chitosan Coatings Crosslinked with Genipin for Corrosion Protection of AZ31 Magnesium Alloy Sheets.” Carbohydr. Polym., 181 71–77 (2018)

    Google Scholar 

  36. Ren, M, Frimmel, FH, Abbt-Braun, G, “Multi-Cycle Photocatalytic Degradation of Bezafibrate by a Cast Polyvinyl Alcohol/Titanium Dioxide (PVA/TiO2) Hybrid Film.” J. Mol. Catal. A Chem., 400 42–48 (2015)

    CAS  Google Scholar 

  37. Rajabinejad, H, Zoccola, M, Patrucco, A, Montarsolo, A, Chen, Y, Ferri, A, Muresan, A, Tonin, C, “Fabrication and Properties of Keratoses/Polyvinyl Alcohol Blend Films.” Polym. Bull., 77 3033–3046 (2020)

    CAS  Google Scholar 

  38. Sheikhattar, M, Attar, H, Sharafi, S, Carty, WM, “Influence of Surface Crystallinity on the Surface Roughness of Different Ceramic Glazes.” Mater. Charact., 118 570–574 (2016)

    CAS  Google Scholar 

  39. Omkaram, I, Chakradhar, RPS, Rao, JL, “EPR, Optical, Infrared and Raman Studies of VO2+ Ions in Polyvinylalcohol Films.” Phys. B Condens. Matter., 388 (1–2) 318–325 (2007)

    CAS  Google Scholar 

  40. Kharazmi, A, Faraji, N, Mat Hussin, R, Saion, E, Yunus, WMM, Behzad, K, “Structural, Optical, Opto-Thermal and Thermal Properties of ZnS–PVA Nanofluids Synthesized Through a Radiolytic Approach.” Beilstein J. Nanotechnol., 6 529–536 (2015)

    CAS  Google Scholar 

  41. Jipa, I, Stoica, A, Stroescu, M, Dobre, L-M, Dobre, T, **ga, S, Tardei, C, “Potassium Sorbate Release From Poly(Vinyl Alcohol)-Bacterial Cellulose Films.” Chem. Pap., 66 138–143 (2012)

    CAS  Google Scholar 

  42. Velazquez, G, Herrera-Gómez, A, Martín-Polo, MO, “Identification of Bound Water Through Infrared Spectroscopy in Methylcellulose.” J. Food. Eng., 59 (1) 79–84 (2003)

    Google Scholar 

  43. Kevorkyants, R, Rudakova, AV, Chizhov, YV, Bulanin, KM, “The Origin of 1560 cm−1 Band in Experimental IR Spectra of Water Adsorbed on TiO2 Surface: Ab Initio Assessment.” Chem. Phys. Lett., 662 97–101 (2016)

    CAS  Google Scholar 

  44. Mohamed Saat, A, Johan, MR, “The Surface Structure and Thermal Properties of Novel Polymer Composite Films Based on Partially Phosphorylated Poly(Vinyl Alcohol) With Aluminum Phosphate.” Sci. World. J., 2014 (9) 7 (2014)

    Google Scholar 

  45. Tian, L, Yang, J, Ji, F, Liu, Y, Yao, F, “Drug Co-Loading and PH-Sensitive Release Core-Shell Nanoparticles via Layer-by-Layer Assembly.” J. Biomater. Sci. Polym. Ed., 25 (14–15) 1573–1589 (2014)

    CAS  Google Scholar 

  46. Vosgien Lacombre, C, Bouvet, G, Trinh, D, Mallarino, S, Touzain, S, “Effect of Pigment and Temperature Onto Swelling and Water Uptake During Organic Coating Ageing.” Prog. Org. Coat., 124 249–255 (2018)

    CAS  Google Scholar 

  47. Ferapontov, NB, Tokmachev, MG, Gagarin, AN, Strusovskaya, NL, Khudyakova, SN, “Influence of the Environment on Swelling of Hydrophilic Polymers.” React. Funct. Polym., 73 (8) 1137–1143 (2013)

    CAS  Google Scholar 

  48. Llanes, L, Dubessay, P, Pierre, G, Delattre, C, Michaud, P, “Biosourced Polysaccharide-Based Superabsorbents.” Polysaccharides, 1 (1) 51–79 (2020)

    Google Scholar 

  49. Spasojević, J, Radosavljević, A, Krstić, J, Jovanović, D, Spasojević, V, Kalagasidis-Krušić, M, Kačarević-Popović, Z, “Dual Responsive Antibacterial Ag-Poly(n-Isopropylacrylamide/Itaconic Acid) Hydrogel Nanocomposites Synthesized by Gamma Irradiation.” Eur. Polym. J., 69 168–185 (2015)

    Google Scholar 

  50. Gomes, MP, Costa, I, Pébère, N, Rossi, JL, Tribollet, B, Vivier, V, “On the Corrosion Mechanism of Mg Investigated by Electrochemical Impedance Spectroscopy.” Electrochim. Acta, 306 61–70 (2019)

    CAS  Google Scholar 

  51. Feliu, S, “Electrochemical Impedance Spectroscopy for the Measurement of the Corrosion Rate of Magnesium Alloys: Brief Review and Challenges.” Metals, 10 (6) 775 (2020)

    CAS  Google Scholar 

  52. Klotz, D, “Negative Capacitance or Inductive Loop? – A General Assessment of a Common Low Frequency Impedance Feature.” Electrochem. Commun., 98 58–62 (2019)

    CAS  Google Scholar 

  53. Ribeiro, J, “Electrochemical Impedance Spectroscopy: A Tool on the Electrochemical Investigations.” Ver. Virtual Química, 12 (6) 1626–1641 (2020)

    CAS  Google Scholar 

  54. Santos, FS, Spinelli, A, Scharnagl, N, da Conceição, TF, “Is Crosslinked Pectin a Suitable Material for Efficient Corrosion Protective Coatings? A Study with AZ31 Mg Alloy.” Prog. Org. Coat., 174 107274 (2023)

    Google Scholar 

  55. Kulkarni, V, Butte, K, Rathod, S, “Natural Polymers – A Comprehensive Review.” Int. J. Res. Pharm. Biomed. Sci., 3 (4) 1597–1613 (2012)

    Google Scholar 

  56. Bhatia, S, Natural Polymer Drug Delivery Systems. Nanoparticles, Plants, and Algae. Springer Cham, Gewerbesraße (2016)

  57. Mohammed, A, Rivers, A, Stuckey, DC, Ward, K, “Alginate Extraction From Sargassum Seaweed in the Caribbean Region: Optimization Using Response Surface Methodology.” Carbohydr. Polym., 245 116419 (2020)

    CAS  Google Scholar 

  58. William, W, Wid, N, “Comparison of Extraction Sequence on Yield and Physico-Chemical Characteristic of Chitosan From Shrimp Shell Waste.” J. Phys. Conf. Ser., 1358 012002 (2019)

    CAS  Google Scholar 

  59. Paulino, AT, Simionato, JI, Garcia, JC, Nozaki, J, “Characterization of Chitosan and Chitin Produced From Silkworm Crysalides.” Carbohydr. Polym., 64 (1) 98–103 (2006)

    CAS  Google Scholar 

  60. Robledo, VR, Vázquez, LIC, “Pectin - Extraction, Purification, Characterization and Applications.” In: Masuelli, M (ed.) Pectins - Extraction, Purification, Characterization and Applications, pp. 1–19. IntechOpen, Rijeka (2020)

    Google Scholar 

  61. Devi, WE, Shukla, RN, Bala, KL, Kumar, A, Mishra, AA, Yadav, KC, “Extraction of Pectin From Citrus Fruit Peel and Its Utilization in Preparation of Jelly.” Int. J. Eng. Res. Technol., 3 (5) 1925–1932 (2014)

    Google Scholar 

Download references

Acknowledgments

The authors thank the UNIEDU/FUMDES/Pós-graduação fellowship and the Brazilian government agencies Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for funding the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thiago Ferreira da Conceição.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beraldo, C.H.M., Spinelli, A., Scharnagl, N. et al. Phosphorylated PVA coatings for corrosion protection of Mg AZ31 alloy. J Coat Technol Res 21, 243–253 (2024). https://doi.org/10.1007/s11998-023-00813-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-023-00813-3

Keywords

Navigation