Log in

Application of UV-B Light and Low-Toxicity Compounds to Prevent Postharvest Spoilage on Lemons

  • RESEARCH
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Green and blue molds and sour rot, caused by Penicillium digitatum, P. italicum, and Geotrichum citri-aurantii, are postharvest diseases which represent an important economic issue in lemon production. Conventionally, their control involves the intensive use of synthetic fungicides, leading to the emergence of resistant strains and harmful residue accumulation on fruits. Present work explores the application of UV-B radiation (UVBr) and its combination with polyhexamethylene guanidine (PHMG) or natamycin on lemons as alternative strategy to manage fungal postharvest diseases caused by fungicide-sensitive and resistant local isolates. UVBr applied in vitro inhibited mycelial growth and conidia viability of all pathogens at the highest assayed dose (5.2 J cm−2). Light preventive treatment applied on lemons with a non-fungicidal and non-phytotoxic UVBr dose of 0.1 J cm−2 significantly reduced disease incidences by approximately 30 to 55%, along with reducing disease severities. Both PHMG and natamycin effectively reduced disease incidences caused by all tested pathogens, with a notable synergistic effect when combining UVBr with natamycin against Penicillium-sensitive isolates. None of these treatments had adverse effects on fruit quality. Importantly, preventive UVBr treatment enabled lemons to maintain H2O2 levels at the wound site in the presence of P. digitatum, which typically suppresses H2O2 production in the host tissue. In conclusion, findings suggest that UVBr and its combination with low-toxicity compounds offer a promising environment-friendly alternative for controlling postharvest lemon diseases caused by both fungicide-sensitive and resistant pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

References

  • Ballester, A.-R., & Lafuente, M. T. (2017). LED Blue Light-induced changes in phenolics and ethylene in citrus fruit: Implication in elicited resistance against Penicillium digitatum infection. Food Chemistry, 218, 575–583. https://doi.org/10.1016/j.foodchem.2016.09.089

  • Berli, F. J., Moreno, D., Piccoli, P., Hespanhol-Viana, L., Silva, M. F., Bressan-Smith, R., & Bottini, R. (2010). Abscisic acid is involved in the response of grape (Vitis vinifera L.) cv. Malbec leaf tissues to ultraviolet-B radiation by enhancing ultraviolet-absorbing compounds, antioxidant enzymes and membrane sterols. Plant, Cell and Environment, 33(1), 1–10. https://doi.org/10.1111/j.1365-3040.2009.02044.x

  • Borden, S., & Higgins, V. J. (2002). Hydrogen peroxide plays a critical role in the defence response of tomato to Cladosporium fulvum. Physiological and Molecular Plant Pathology, 61(4), 227–236. https://doi.org/10.1006/pmpp.2002.0435

  • Castagna, A., & Dall’Asta, C., Chiavaro, E., Galaverna, G., & Ranieri, A. (2014). Effect of post-harvest UV-B irradiation on polyphenol profile and antioxidant activity in flesh and peel of tomato fruits. Food and Bioprocess Technology, 7(8), 2241–2250. https://doi.org/10.1007/s11947-013-1214-5

    Article  CAS  Google Scholar 

  • Cerioni, L., Rapisarda, V. A., Doctor, J., Fikkert, S., Ruiz, T., Fassel, R., & Smilanick, J. L. (2013a). Use of phosphite salts in laboratory and semicommercial tests to control citrus postharvest decay. Plant Disease, 97(2), 201–212. https://doi.org/10.1094/PDIS-03-12-0299-RE

  • Cerioni, L., Sepulveda, M., Rubio-Ames, Z., Volentini, S. I., Rodríguez-Montelongo, L., Smilanick, J. L., & Rapisarda, V. A. (2013b). Control of lemon postharvest diseases by low-toxicity salts combined with hydrogen peroxide and heat. Postharvest Biology and Technology, 83, 17–21. https://doi.org/10.1016/j.postharvbio.2013.03.002

  • Cerioni, L., & Smilanick, J. L. (2012). Control of postharvest green and blue molds of lemons with potassium phosphite and hydrogen peroxide. PDMR, 6.

  • Chen, D., Förster, H., & Adaskaveg, J. E. (2021). Natamycin, a biofungicide for managing major postharvest fruit decays of citrus. 105(5), 1408–1414. https://doi.org/10.1094/pdis-08-20-1650-re

  • Cia, P., Pascholati, S. F., Benato, E. A., Camili, E. C., & Santos, C. A. (2007). Effects of gamma and UV-C irradiation on the postharvest control of papaya anthracnose. Postharvest Biology and Technology, 43(3), 366–373. https://doi.org/10.1016/j.postharvbio.2006.10.004

  • Csapó, J., Joe, P., Albert, C., & Sipos, P. (2019). Effect of UV light on food quality and safety. Acta Universitatis Sapientiae, Alimentaria, 12, 21–41. https://doi.org/10.2478/ausal-2019-0002

    Article  CAS  Google Scholar 

  • D'Hallewin, G., Schirra, M., Pala, M., & Ben-Yehoshua, S. (2000). Ultraviolet C irradiation at 0.5 kJ·m-2 reduces decay without causing damage or affecting postharvest quality of star ruby grapefruit (C. paradisi Macf.). Journal of Agricultural and Food Chemistry, 48(10), 4571–4575. https://doi.org/10.1021/jf000559i

  • Darré, M., Vicente, A. R., Cisneros-Zevallos, L., & Artés-Hernández, F. (2022). Postharvest ultraviolet radiation in fruit and vegetables: Applications and factors modulating its efficacy on bioactive compounds and microbial growth. Foods, 11(5).

  • Delves-Broughton, J., Thomas, L., & Williams, G. (2006). Natamycin as an antimycotic preservative on cheese and fermented sausages. Food Australia, 58, 19–21.

    CAS  Google Scholar 

  • Droby, S., Chalutz, E., Horev, B., Cohen, L., Gaba, V., Wilson, C. L., & Wisniewski, M. (1993). Factors affecting UV-induced resistance in grapefruit against the green mould decay caused by Penicillium digitatum. Plant Pathology, 42(3), 418–424. https://doi.org/10.1111/j.1365-3059.1993.tb01520.x

  • Du, Y., Li, Y., Tian, Z., Cheng, Y., & Long, C. A. (2022). Natamycin as a Safe Food Additive to Control Postharvest Green Mould and Sour Rot in Citrus. https://doi.org/10.1111/jam.15769

    Article  Google Scholar 

  • Eckert, J., & Brown, G. (1986). Evaluation of postharvest fungicide treatments for citrus fruits.

  • Eckert, J. W. (1989). Postharvest disorders and diseases of citrus fruit. The citrus industry, 179–260.

  • Erasmus, A., Lennox, C. L., Korsten, L., Lesar, K., & Fourie, P. H. (2015). Imazalil resistance in Penicillium digitatum and P. italicum causing citrus postharvest green and blue mould: Impact and options. Postharvest Biology and Technology, 107, 66–76. https://doi.org/10.1016/j.postharvbio.2015.05.008

  • Feng, L., Wu, F., Li, J., Jiang, Y., & Duan, X. (2011). Antifungal activities of polyhexamethylene biguanide and polyhexamethylene guanide against the citrus sour rot pathogen Geotrichum citri-aurantii in vitro and in vivo. Postharvest Biology and Technology, 61(2), 160–164. https://doi.org/10.1016/j.postharvbio.2011.03.002

  • Fernández, G., Sbres, M., Lado, J., & Pérez-Faggiani, E. (2022). Postharvest sour rot control in lemon fruit by natamycin and an Allium extract. International Journal of Food Microbiology, 368, 109605. https://doi.org/10.1016/j.ijfoodmicro.2022.109605

    Article  CAS  PubMed  Google Scholar 

  • Fuciños, C., Míguez, M., Cerqueira, M. A., Costa, M. J., Vicente, A. A., Rúa, M. L., & Pastrana, L. M. (2015). Functional characterisation and antimicrobial efficiency assessment of smart nanohydrogels containing natamycin incorporated into polysaccharide-based films. Food and Bioprocess Technology, 8(7), 1430–1441. https://doi.org/10.1007/s11947-015-1506-z

    Article  CAS  Google Scholar 

  • Gahan, P. B. (1984). Plant histochemistry and cytochemistry: An introduction. Academic Press. https://books.google.com.ar/books?id=lP8UAQAAIAAJ

  • Geng, P., Chen, S., Hu, M., Rizwan-Ul-Haq, M., Lai, K., Qu, F., & Zhang, Y. (2011). Combination of Kluyveromyces marxianus and sodium bicarbonate for controlling green mold of citrus fruit. International Journal of Food Microbiology, 151(2), 190–194. https://doi.org/10.1016/j.ijfoodmicro.2011.08.023

    Article  CAS  PubMed  Google Scholar 

  • Gündüz, G. T., Juneja, V. K., & Pazır, F. (2015). Application of ultraviolet-C light on oranges for the inactivation of postharvest wound pathogens. Food Control, 57, 9–13. https://doi.org/10.1016/j.foodcont.2015.04.003

  • He, C., Zhang, Z., Li, B., Xu, Y., & Tian, S. (2019). Effect of natamycin on Botrytis cinerea and Penicillium expansum—postharvest pathogens of grape berries and jujube fruit. Postharvest Biology and Technology, 151, 134–141. https://doi.org/10.1016/j.postharvbio.2019.02.009

  • Hilal, M., Rodríguez-Montelongo, L., Rosa, M., Gallardo, M., González, J. A., Interdonato, R., & Prado, F. E. (2008). Solar and supplemental UV-B radiation effects in lemon peel UV-B-absorbing compound content—seasonal variations. Photochem Photobiol, 84(6), 1480–1486. https://doi.org/10.1111/j.1751-1097.2008.00370.x

  • Holmes, G. J., & Eckert, J. W. (1999). Sensitivity of Penicillium digitatum and P. italicum to postharvest citrus fungicides in California. Phytopathology, 89(9), 716–721.

  • Hussien, A., Ahmed, Y., Al-Essawy, A.-H., & Youssef, K. (2018). Evaluation of different salt-amended electrolysed water to control postharvest moulds of citrus. Tropical Plant Pathology, 43(1), 10–20. https://doi.org/10.1007/s40858-017-0179-8

    Article  Google Scholar 

  • Interdonato, R., Rosa, M., Nieva, C. B., González, J. A., Hilal, M., & Prado, F. E. (2011). Effects of low UV-B doses on the accumulation of UV-B absorbing compounds and total phenolics and carbohydrate metabolism in the peel of harvested lemons. Environmental and Experimental Botany, 70(2), 204–211. https://doi.org/10.1016/j.envexpbot.2010.09.006

  • Jemric, T., Ivic, D., Fruk, G., Matijas, H. S., Cvjetkovic, B., Bupic, M., & Pavkovic, B. (2011). Reduction of postharvest decay of peach and nectarine caused by Monilinia laxa using hot water dip**. Food and Bioprocess Technology, 4(1), 149–154. https://doi.org/10.1007/s11947-010-0355-z

    Article  Google Scholar 

  • Jimenez-Cuesta, M., Cuquerella, J., & MartinezJavega, J. M. (1983). Determination of a color index for citrus fruit degreening. Proceedings of the International Society of Citriculture, 1981 2, 750–753. https://eurekamag.com/research/001/180/001180502.php

  • Kanetis, L., Förster, H., Jones, C. A., Borkovich, K. A., & Adaskaveg, J. E. (2008). Characterization of genetic and biochemical mechanisms of fludioxonil and pyrimethanil resistance in field isolates of Penicillium digitatum. Phytopathology, 98(2), 205–214. https://doi.org/10.1094/phyto-98-2-0205

    Article  CAS  PubMed  Google Scholar 

  • Kim, J. H., & Tam, C. C. (2021). Antifungal efficacy of redox-active natamycin against some foodborne fungi-comparison with Aspergillus fumigatus. 10(9). https://doi.org/10.3390/foods10092073

  • Kuźniak, E., & Urbanek, H. (2000). The involvement of hydrogen peroxide in plant responses to stresses. Acta Physiologiae Plantarum, 22(2), 195–203. https://doi.org/10.1007/s11738-000-0076-4

    Article  Google Scholar 

  • Lado, J., Manzi, M., Silva, G., Luque, E., Blanco, O., & Pérez, E. (2010). Effective alternatives for the postharvest control of imazalil resistant Penicillium digitatum strains. Acta Horticulturae, 877, 1449–1456. https://doi.org/10.17660/ActaHortic.2010.877.198

  • Macarisin, D., Cohen, L., Eick, A., Rafael, G., Belausov, E., Wisniewski, M., & Droby, S. (2007). Penicillium digitatum suppresses production of hydrogen peroxide in host tissue during infection of citrus fruit. Phytopathology, 97(11), 1491–1500. https://doi.org/10.1094/phyto-97-11-1491

    Article  CAS  PubMed  Google Scholar 

  • Moraes Bazioli, J., Belinato, J. R., Costa, J. H., Akiyama, D. Y., Pontes, J. G., Kupper, K. C., & Fill, T. P. (2019). Biological control of citrus postharvest phytopathogens. Toxins, 11(8). https://doi.org/10.3390/toxins11080460

  • Olmedo, G. M., Baigorria, C. G., Ramallo, A. C., Sepulveda, M., Ramallo, J., Volentini, S. I., & Cerioni, L. (2021). Inhibition of the lemon brown rot causal agent Phytophthora citrophthora by low-toxicity compounds. Journal of the Science of Food and Agriculture, 101(9), 3613–3619. https://doi.org/10.1002/jsfa.10990

  • Olmedo, G. M., Cerioni, L., González, M. M., Cabrerizo, F. M., Rapisarda, V. A., & Volentini, S. I. (2017a). Antifungal activity of β-carbolines on Penicillium digitatum and Botrytis cinerea. Food Microbiol, 62, 9–14. https://doi.org/10.1016/j.fm.2016.09.011

  • Olmedo, G. M., Cerioni, L., González, M. M., Cabrerizo, F. M., Volentini, S. I., & Rapisarda, V. A. (2017b). UVA photoactivation of harmol enhances its antifungal activity against the phytopathogens Penicillium digitatum and Botrytis cinerea [Original Research]. Front Microbiol, 8. https://doi.org/10.3389/fmicb.2017.00347

  • Olmedo, G. M., Cerioni, L., Sepulveda, M., Ramallo, J., Rapisarda, V. A., & Volentini, S. I. (2018). Polyhexamethylene guanidine as a fungicide, disinfectant and wound protector in lemons challenged with Penicillium digitatum. Food Microbiology, 76, 128–134. https://doi.org/10.1016/j.fm.2018.03.018

    Article  CAS  PubMed  Google Scholar 

  • Oulé, M. K., Quinn, K., Dickman, M., Bernier, A. M., Rondeau, S., De Moissac, D., & Diop, L. (2012). Akwaton, polyhexamethylene-guanidine hydrochloride-based sporicidal disinfectant: a novel tool to fight bacterial spores and nosocomial infections. Journal of Medical Microbiology, 61(Pt 10), 1421–1427. https://doi.org/10.1099/jmm.0.047514-0

  • Palou, L. (2018). Postharvest treatments with GRAS salts to control fresh fruit decay. Horticulturae, 4(4), 46. https://www.mdpi.com/2311-7524/4/4/46

  • Park, Y. J., Jeong, M. H., Bang, I. J., Kim, H. R., & Chung, K. H. (2019). Guanidine-based disinfectants, polyhexamethylene guanidine-phosphate (PHMG-P), polyhexamethylene biguanide (PHMB), and oligo(2-(2-ethoxy)ethoxyethyl guanidinium chloride (PGH) induced epithelial-mesenchymal transition in A549 alveolar epithelial cells. Inhalation Toxicology, 31(4), 161–166. https://doi.org/10.1080/08958378.2019.1624896

    Article  CAS  PubMed  Google Scholar 

  • Perumal, A. B., Sellamuthu, P. S., Nambiar, R. B., & Sadiku, E. R. (2017). Effects of essential oil vapour treatment on the postharvest disease control and different defence responses in two mango (Mangifera indica L.) cultivars. Food and Bioprocess Technology, 10(6), 1131–1141. https://doi.org/10.1007/s11947-017-1891-6

  • Phonyiam, O., Ohara, H., Kondo, S., Naradisorn, M., & Setha, S. (2021). Postharvest UV-C irradiation influenced cellular structure, jasmonic acid accumulation, and resistance against green mold decay in satsuma mandarin fruit (Citrus unshiu) [original research]. Frontiers in Sustainable Food Systems, 5. https://doi.org/10.3389/fsufs.2021.684434

  • Reymick, O. O., Liu, D., Cheng, Y., Ouyang, Q., & Tao, N. (2022). Cuminaldehyde-induced oxidative stress inhibits growth of Penicillium digitatum in citrus. Postharvest Biology and Technology, 192, 111991. https://doi.org/10.1016/j.postharvbio.2022.111991

  • Richter, D. (1987). Synergism: A patent point of view. Pesticide Science, 19(309), 15.

    Google Scholar 

  • Rodov, V., Ben-Yehoshua, S., Kim, J. J., Shapiro, B., & Ittah, Y. (1992). Ultraviolet illumination induces scoparone production in kumquat and orange fruit and improves decay resistance. Journal of the American Society for Horticultural Science jashs, 117(5), 788–792. https://doi.org/10.21273/JASHS.117.5.788

  • Romanazzi, G., Smilanick, J. L., Feliziani, E., & Droby, S. (2016). Integrated management of postharvest gray mold on fruit crops. Postharvest Biology and Technology, 113, 69–76. https://doi.org/10.1016/j.postharvbio.2015.11.003

  • Ruiz, V. E., Cerioni, L., Zampini, I. C., Cuello, S., Isla, M. I., Hilal, M., & Rapisarda, V. A. (2017). UV-B radiation on lemons enhances antifungal activity of flavedo extracts against Penicillium digitatum. LWT - Food Science and Technology, 85, 96–103. https://doi.org/10.1016/j.lwt.2017.07.002

  • Ruiz, V. E., Interdonato, R., Cerioni, L., Albornoz, P., Ramallo, J., Prado, F. E., & Rapisarda, V. A. (2016). Short-term UV-B exposure induces metabolic and anatomical changes in peel of harvested lemons contributing in fruit protection against green mold. Journal of Photochemistry and Photobiology B: Biology, 159, 59–65. https://doi.org/10.1016/j.jphotobiol.2016.03.016

  • Saito, S., Wang, F., & **ao, C. L. (2019). Efficacy of natamycin against gray mold of stored mandarin fruit caused by isolates of Botrytis cinerea with multiple fungicide resistance. Plant Disease, 104(3), 787–792. https://doi.org/10.1094/PDIS-04-19-0844-RE

    Article  Google Scholar 

  • Saito, S., Wang, F., & **ao, C.-L. (2022). Natamycin as a postharvest treatment to control gray mold on stored blueberry fruit caused by multi-fungicide resistant Botrytis cinerea. Postharvest Biology and Technology, 187, 111862. https://doi.org/10.1016/j.postharvbio.2022.111862

  • Santin, M., Castagna, A., Miras-Moreno, B., Rocchetti, G., Lucini, L., Hauser, M.-T., & Ranieri, A. (2020). Beyond the visible and below the peel: How UV-B radiation influences the phenolic profile in the pulp of peach fruit. A biochemical and molecular study [original research]. Frontiers in Plant Science, 11. https://doi.org/10.3389/fpls.2020.579063

  • Schirra, M., D'Hallewin, G., Ben-Yehoshua, S., & Fallik, E. (2000). Host–pathogen interactions modulated by heat treatment. Postharvest Biology and Technology, 21(1), 71–85. https://doi.org/10.1016/S0925-5214(00)00166-6

  • Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 9(7), 671–675. https://doi.org/10.1038/nmeth.2089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schreiner, M., Mewis, I., Huyskens-Keil, S., Jansen, M. A. K., Zrenner, R., Winkler, J. B., & Krumbein, A. (2012). UV-B-induced secondary plant metabolites - potential benefits for plant and human health. Critical Reviews in Plant Sciences, 31(3), 229–240. https://doi.org/10.1080/07352689.2012.664979

  • Seididamyeh, M., Netzel, M. E., Mereddy, R., Harmer, J. R., & Sultanbawa, Y. (2023). Photodynamic inactivation of Botrytis cinerea spores by curcumin—effect of treatment factors and characterization of photo-generated reactive oxygen species. Food and Bioprocess Technology. https://doi.org/10.1007/s11947-023-03150-w

    Article  Google Scholar 

  • Sheng, K., Zheng, H., Shui, S., Yan, L., Liu, C., & Zheng, L. (2018). Comparison of postharvest UV-B and UV-C treatments on table grape: Changes in phenolic compounds and their transcription of biosynthetic genes during storage. Postharvest Biology and Technology, 138, 74–81. https://doi.org/10.1016/j.postharvbio.2018.01.002

  • Soto-Muñoz, L., Taberner, V., de la Fuente, B., Jerbi, N., & Palou, L. (2020). Curative activity of postharvest GRAS salt treatments to control citrus sour rot caused by Geotrichum citri-aurantii. International Journal of Food Microbiology, 335, 108860. https://doi.org/10.1016/j.ijfoodmicro.2020.108860

  • Spotts, R. A., Cervantes, L. A., & Facteau, T. J. (2002). Integrated control of brown rot of sweet cherry fruit with a preharvest fungicide, a postharvest yeast, modified atmosphere packaging, and cold storage temperature. Postharvest Biology and Technology, 24(3), 251–257. https://doi.org/10.1016/S0925-5214(01)00155-7

  • Treutter, D. (2005). Significance of flavonoids in plant resistance and enhancement of their biosynthesis. Plant Biology (stuttgart, Germany), 7(06), 581–591.

    Article  CAS  PubMed  Google Scholar 

  • Treutter, D. (2006). Significance of flavonoids in plant resistance: A review. Environmental Chemistry Letters, 4(3), 147. https://doi.org/10.1007/s10311-006-0068-8

    Article  CAS  Google Scholar 

  • Wisniewski, M., Droby, S., Norelli, J., Liu, J., & Schena, L. (2016). Alternative management technologies for postharvest disease control: The journey from simplicity to complexity. Postharvest Biology and Technology, 122, 3–10. https://doi.org/10.1016/j.postharvbio.2016.05.012

  • Yamaga, I., & Nakamura, S. (2018). Blue LED irradiation induces scoparone production in wounded satsuma mandarin ‘aoshima unshu’ and reduces fruit decay during long-term storage. The Horticulture Journal, 87(4), 474–480. https://doi.org/10.2503/hortj.OKD-147

    Article  CAS  Google Scholar 

  • Yamaga, I., Kuniga, T., Aoki, S., Kato, M., & Kobayashi, Y. (2016). Effect of ultraviolet-B irradiation on disease development caused by Penicillium italicum in satsuma mandarin fruit. The Horticulture Journal, 85(1), 86–91. https://doi.org/10.2503/hortj.MI-074

    Article  CAS  Google Scholar 

  • Zhang, W., & Jiang, W. (2019). UV treatment improved the quality of postharvest fruits and vegetables by inducing resistance. Trends in Food Science & Technology, 92, 71–80. https://doi.org/10.1016/j.tifs.2019.08.012

  • Zhu, R., Lu, L., Guo, J., Lu, H., Abudureheman, N., Yu, T., & Zheng, X. (2013). Postharvest control of green mold decay of citrus fruit using combined treatment with sodium bicarbonate and Rhodosporidium paludigenum. Food and Bioprocess Technology, 6(10), 2925–2930. https://doi.org/10.1007/s11947-012-0863-0

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge S.A. San Miguel for kindly providing lemons and UNIGUARD™ and Ctrl Micro International S.A. for providing Hygisoft V20. We also thank PhD Gabriela María Olmedo for helpful discussion and PhD María Soledad Carbajo and Constanza Aguirre for technical assistance.

Funding

This work was supported by grants from Agencia Nacional de Promoción Científica y Tecnológica (PICT 2016–0595, PICT 2019–1380) and Universidad Nacional de Tucumán (PIUNT 2023-D0750). JZA fellowship was funded by ANPCyT and CONICET.

Author information

Authors and Affiliations

Authors

Contributions

Jakeline Zuluaga Acosta investigation, data curation, formal analysis and writing an original draft; Sabrina Inés Volentini and Mario Alberto Debes investigation, methodology and data curation; Mirna Hilal conceptualization and supervision; Luciana Cerioni and Viviana Andrea Rapisarda conceptualization, data curation, formal analysis and writing an original draft, and supervision. All authors have reviewed and edited the manuscript.

Corresponding authors

Correspondence to Luciana Cerioni or Viviana Andrea Rapisarda.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

The content of the submitted article has been carefully examined and approved by all authors who are all aware of its submission to this journal.

Conflict of Interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1690 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zuluaga-Acosta, J., Volentini, S., Debes, M. et al. Application of UV-B Light and Low-Toxicity Compounds to Prevent Postharvest Spoilage on Lemons. Food Bioprocess Technol (2023). https://doi.org/10.1007/s11947-023-03291-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11947-023-03291-y

Keywords

Navigation