Log in

Air Frying as a Heat Pre-treatment Method for Improving the Extraction and Yield of Canolol from Canola Seed Oil

  • Research
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Roasting of canola seeds before oil extraction is essential for producing unique flavors and heat-induced formation of novel phenolic compounds. The current study assessed the efficacy of roasting by air frying as a pre-treatment technique to improve the extraction of canolol and other oil-soluble sinapic acidic derivatives (SADs) from canola seeds. Air frying of canola seeds was performed at temperature and time regimens of 160, 170, 180, or 190 °C for 5, 10, 15, or 20 min, respectively. Soxhlet method was used for oil extraction and the soluble SADs were extracted from the oil by addition of an equal volume of hexane/70% methanol mixture followed by quantification using high-performance liquid chromatography-diode array detection (HPLC–DAD). The total phenolic content (TPC) and antioxidative property of the oils were also evaluated. The results indicated a time–temperature association for canolol formation. The optimum air frying condition at 190 °C for 15 min generated the highest canolol concentration (1439 ± 45.6 μg/100 g roasted seed) in addition to other unidentified SADs. The oil extracts obtained from canola seed roasted at 180, 15 min, 190 °C, 15 and 20 min showed the highest TPC (0.387 ± 0.015, 0.413 ± 0.002 and 0.419 ± 0.002 mg GAE/g oil), respectively, and the strongest antioxidant activities (DPPH radical scavenging and iron reducing), but exhibited weak metal ion chelating activity. There was a strong positive correlation of canolol content to the antioxidant activities (DPPH, FRAP) and TPC value for the canola oil extracts (r = 0.85, r = 0.93 and 0.88), respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The data obtained during the study are available from the corresponding author upon reasonable request. 

References

  • Aachary, A. A., Chen, Y., Eskin, N. A. M., & Thiyam-Hollander, U. (2014). Crude canolol and canola distillate extracts improve the stability of refined canola oil during deep-fat frying. European Journal of Lipid Science and Technology, 116(11), 1467–1476. https://doi.org/10.1002/EJLT.201300498

    Article  CAS  Google Scholar 

  • Azadmard-Damirchi, S., Habibi-Nodeh, F., Hesari, J., Nemati, M., & Achachlouei, B. F. (2010). Effect of pretreatment with microwaves on oxidative stability and nutraceuticals content of oil from rapeseed. Food Chemistry, 121(4), 1211–1215. https://doi.org/10.1016/j.foodchem.2010.02.006

    Article  CAS  Google Scholar 

  • Benzie, I. F. F., & Strain, J. J. (1996). The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “‘Antioxidant Power’”: The FRAP Assay. Analytical Biochemistry, 239, 70–76

  • Cai, Y., Luo, Q., Sun, M., & Corke, H. (2004). Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sciences, 74(17), 2157–2184. https://doi.org/10.1016/J.LFS.2003.09.047

    Article  CAS  Google Scholar 

  • Cisneros, F. H., Paredes, D., Arana, A., & Cisneros-Zevallos, L. (2014). Chemical composition, oxidative stability and antioxidant capacity of oil extracted from roasted seeds of Sacha-Inchi (Plukenetia volubilis L.). https://doi.org/10.1021/jf500936j

  • Cong, Y., Zheng, M., Huang, F., Liu, C., & Zheng, C. (2020). Sinapic acid derivatives in microwave-pretreated rapeseeds and minor components in oils. Journal of Food Composition and Analysis, 87, 103394. https://doi.org/10.1016/J.JFCA.2019.103394

    Article  CAS  Google Scholar 

  • Eskin, M. N. A., Aladedunye, F., Unger, E. H., Shah, S., Chen, G., & Jones, P. J. (2020). Canola Oil. Bailey’s Industrial Oil and Fat Products, 1–63. https://doi.org/10.1002/047167849X.BIO004.PUB2

  • Fadairo, O., Nandasiri, R., Alashi, A. M., Eskin, N. A. M., & Thiyam-Höllander, U. (2021). Air frying pretreatment and the recovery of lipophilic sinapates from the oil fraction of mustard samples. Journal of Food Science, 86(9), 3810–3823. https://doi.org/10.1111/1750-3841.15861

    Article  CAS  Google Scholar 

  • Fitriansyah, S. N., Fidrianny, I., & Ruslan, K. (2017). Correlation of total phenolic, flavonoid and carotenoid content of Sesbania sesban (L. Merr) leaves extract with DPPH scavenging activties. Available Online on International Journal of Pharmacognosy and Phytochemical Research, 9(1). https://doi.org/10.25258/ijpapr.v9i1.8047

  • Girgih, A. T., Udenigwe, C. C., & Aluko, R. E. (2011). In vitro antioxidant properties of hemp seed (Cannabis sativa L.) protein hydrolysate fractions. JAOCS, Journal of the American Oil Chemists’ Society, 88(3), 381–389. https://doi.org/10.1007/S11746-010-1686-7/TABLES/2

  • Górnaś, P., Siger, A., Juhņeviča, K., Lacis, G., Šne, E., & Segliņa, D. (2014). Cold-pressed Japanese quince (Chaenomeles japonica (Thunb.) Lindl. ex Spach) seed oil as a rich source of α-tocopherol, carotenoids and phenolics: A comparison of the composition and antioxidant activity with nine other plant oils. European Journal of Lipid Science and Technology, 116(5), 563–570. https://doi.org/10.1002/EJLT.201300425

  • Harbaum-Piayda, B., Oehlke, K., Sönnichsen, F. D., Zacchi, P., Eggers, R., & Schwarz, K. (2010). New polyphenolic compounds in commercial deodistillate and rapeseed oils. Food Chemistry, 123(3), 607–615. https://doi.org/10.1016/j.foodchem.2010.04.078

    Article  CAS  Google Scholar 

  • Hideo Kuwahara, †,‡, Ayako Kanazawa, §, Daisuke Wakamatu, ⊥,#, Shigeru Morimura, #, Kenji Kida, #, Takaaki Akaike, † and, & Hiroshi Maeda*, †. (2004). Antioxidative and antimutagenic activities of 4-vinyl-2,6-dimethoxyphenol (canolol) isolated from canola oil. https://doi.org/10.1021/JF040045+

  • Jalili, F., Jafari, S. M., Emam-Djomeh, Z., Malekjani, N., & Farzaneh, V. (2018). Optimization of ultrasound-assisted extraction of oil from canola seeds with the use of response surface methodology. Food Analytical Methods, 11(2), 598–612. https://doi.org/10.1007/S12161-017-1030-Z/TABLES/6

    Article  Google Scholar 

  • Khattab, R., Eskin, M., Aliani, M., & Thiyam, U. (2010). Determination of sinapic acid derivatives in canola extracts using high-performance liquid chromatography. JAOCS, Journal of the American Oil Chemists’ Society, 87(2), 147–155. https://doi.org/10.1007/S11746-009-1486-0

    Article  CAS  Google Scholar 

  • Khattab, R. Y., Eskin, M. N. A., & Thiyam-Hollander, U. (2014). Production of canolol from canola meal phenolics via hydrolysis and microwave-induced decarboxylation. JAOCS, Journal of the American Oil Chemists’ Society, 91(1), 89–97. https://doi.org/10.1007/S11746-013-2345-6

    Article  CAS  Google Scholar 

  • Koski, A., Pekkarinen, S., Hopia, A., Wähälä, K., & Heinonen, M. (2003). Processing of rapeseed oil: Effects on sinapic acid derivative content and oxidative stability. European Food Research and Technology, 217(2), 110–114. https://doi.org/10.1007/s00217-003-0721-4

    Article  CAS  Google Scholar 

  • Kraljić, K., Škevin, D., Barišić, L., Kovačević, M., Obranović, M., & Jurčević, I. (2015). Changes in 4-vinylsyringol and other phenolics during rapeseed oil refining. Food Chemistry, 187, 236–242. https://doi.org/10.1016/J.FOODCHEM.2015.04.039

    Article  Google Scholar 

  • Kraljić, K., Škevin, D., Pospišil, M., Obranović, M., Signeral, S. N. D., & Bosolt, T. (2013). Quality of rapeseed oil produced by conditioning seeds at modest temperatures. Journal of the American Oil Chemists’ Society, 90(4), 589–599. https://doi.org/10.1007/S11746-012-2195-7

    Article  Google Scholar 

  • Li, J., & Guo, Z. (2016). Concurrent extraction and transformation of bioactive phenolic compounds from rapeseed meal using pressurized solvent extraction system. Industrial Crops and Products, 94, 152–159. https://doi.org/10.1016/j.indcrop.2016.08.045

    Article  CAS  Google Scholar 

  • Matthäus, B., Pudel, F., Chen, Y., Achary, A., & Thiyam-Holländer, U. (2014). Impact of canolol-enriched extract from heat-treated canola meal to enhance oil quality parameters in deep-frying: A comparison with rosemary extract and TBHQ-fortified oil systems. Journal of the American Oil Chemists’ Society, 91(12), 2065–2076. https://doi.org/10.1007/S11746-014-2561-8

    Article  Google Scholar 

  • Mayengbam, S., Aachary, A., & Thiyam-Holländer, U. (2014). Endogenous phenolics in hulls and cotyledons of mustard and canola: A comparative study on its sinapates and antioxidant capacity. Antioxidants, 3(3), 544–558. https://doi.org/10.3390/antiox3030544

    Article  CAS  Google Scholar 

  • Nandasiri, R., & Eskin, N. A. M. (2022). Canolol and its derivatives: A novel bioactive with antioxidant and anticancer properties. Advances in Food and Nutrition Research, 100, 109–129. https://doi.org/10.1016/BS.AFNR.2022.03.003

  • Nandasiri, R., Eskin, N. A. M., & Thiyam-Höllander, U. (2019). Antioxidative polyphenols of canola meal extracted by high pressure: Impact of temperature and solvents. Journal of Food Science, 84(11), 3117–3128. https://doi.org/10.1111/1750-3841.14799

    Article  CAS  Google Scholar 

  • Nandasiri, R., Imran, A., Thiyam-Holländer, U., & Eskin, N. A. M. (2021). Rapidoxy® 100: A solvent-free pre-treatment for production of canolol. Frontiers in Nutrition, 8, 687851. https://doi.org/10.3389/FNUT.2021.687851

    Article  Google Scholar 

  • Rękas, A., Ścibisz, I., Siger, A., & Wroniak, M. (2017). The effect of microwave pretreatment of seeds on the stability and degradation kinetics of phenolic compounds in rapeseed oil during long-term storage. Food Chemistry, 222, 43–52. https://doi.org/10.1016/j.foodchem.2016.12.003

  • Różańska, M. B., Kowalczewski, P. Ł., Tomaszewska-Gras, J., Dwiecki, K., & Mildner-Szkudlarz, S. (2019). Seed-roasting process affects oxidative stability of cold-pressed oils. Antioxidants 2019, Vol. 8, Page 313, 8(8), 313. https://doi.org/10.3390/ANTIOX8080313

  • Shrestha, K., & de Meulenaer, B. (2014). Effect of seed roasting on canolol, tocopherol, and phospholipid contents, Maillard type reactions, and oxidative stability of mustard and rapeseed oils. Journal of Agricultural and Food Chemistry, 62(24), 5412–5419. https://doi.org/10.1021/jf500549t

    Article  CAS  Google Scholar 

  • Shrestha, K., Stevens, C. V., & De Meulenaer, B. (2012). Isolation and identification of a potent radical scavenger (canolol) from roasted high erucic mustard seed oil from Nepal and its formation during roasting. Journal of Agricultural and Food Chemistry, 60(30), 7506–7512. https://doi.org/10.1021/jf301738y

    Article  CAS  Google Scholar 

  • Siger, A., & Józefiak, M. (2016). The effects of roasting and seed moisture on the phenolic compound levels in cold-pressed and hot-pressed rapeseed oil. European Journal of Lipid Science and Technology, 118(12), 1952–1958. https://doi.org/10.1002/ejlt.201500249

    Article  CAS  Google Scholar 

  • Siger, A., Józefiak, M., & Górnaś, P. (2017). Roasting and seed moisture on the antioxidant activity. Acta Scientiarum Polonorum Technologia Alimentaria, 1(16), 69–81.

    Google Scholar 

  • Siger, A., Kaczmarek, A., & Rudzińska, M. (2015). Antioxidant activity and phytochemical content of cold-pressed rapeseed oil obtained from roasted seeds. European Journal of Lipid Science and Technology, 117(8), 1225–1237. https://doi.org/10.1002/ejlt.201400378

    Article  CAS  Google Scholar 

  • Siger, A., Nogala-Kalucka, M., & Lampart-Szczapa, E. (2008). The content and antioxidant activity of phenolic compounds in cold-pressed plant oils. Journal of Food Lipids, 15(2), 137–149. https://doi.org/10.1111/J.1745-4522.2007.00107.X

    Article  CAS  Google Scholar 

  • Sørensen, A. D. M., Friel, J., Winkler-Moser, J. K., Jacobsen, C., Huidrom, D., Reddy, N., & Thiyam-Holländer, U. (2013). Impact of endogenous canola phenolics on the oxidative stability of oil-in-water emulsions. European Journal of Lipid Science and Technology, 115(5), 501–512. https://doi.org/10.1002/EJLT.201200354

    Article  Google Scholar 

  • Spielmeyer, A., Wagner, A., & Jahreis, G. (2009). Influence of thermal treatment of rapeseed on the canolol content. Food Chemistry, 112(4), 944–948. https://doi.org/10.1016/j.foodchem.2008.07.011

    Article  CAS  Google Scholar 

  • Sun-Waterhouse, D., Xue, D., & Wadhwa, S. (2013). Effects of added phenolics on the lipid deterioration and antioxidant content of deep-fried potato fritters. Food and Bioprocess Technology, 6(11), 3256–3265. https://doi.org/10.1007/S11947-012-1001-8/FIGURES/3

    Article  CAS  Google Scholar 

  • Szydlowska-Czerniak, A., Trokowski, K., Karlovits, G., & Szlyk, E. (2010). Determination of antioxidant capacity, phenolic acids, and fatty acid composition of rapeseed varieties. Journal of Agricultural and Food Chemistry, 58(13), 7502–7509. https://doi.org/10.1021/JF100852X

    Article  CAS  Google Scholar 

  • Team, R. C. (2013). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

  • Teh, S. S., Niven, B. E., Bekhit, A. E. D. A., Carne, A., & Birch, E. J. (2015). Microwave and pulsed electric field assisted extractions of polyphenols from defatted canola seed cake. International Journal of Food Science & Technology, 50(5), 1109–1115. https://doi.org/10.1111/IJFS.12749

    Article  CAS  Google Scholar 

  • Terpinc, P., Polak, T., Šegatin, N., Hanzlowsky, A., Ulrih, N. P., & Abramovič, H. (2011). Antioxidant properties of 4-vinyl derivatives of hydroxycinnamic acids. Food Chemistry, 128(1), 62–69. https://doi.org/10.1016/J.FOODCHEM.2011.02.077

    Article  CAS  Google Scholar 

  • Vuorela, S., Kreander, K., Karonen, M., Nieminen, R., Hämäläinen, M., Galkin, A., Laitinen, L., Salminen, J. P., Moilanen, E., Pihlaja, K., Vuorela, H., Vuorela, P., & Heinonen, M. (2005). Preclinical evaluation of rapeseed, raspberry, and pine bark phenolics for health related effects. Journal of Agricultural and Food Chemistry, 53(15), 5922–5931. https://doi.org/10.1021/JF050554R/ASSET/IMAGES/LARGE/JF050554RF00001.JPEG

    Article  CAS  Google Scholar 

  • Wang, W., Yang, B., Li, W., Zhou, Q., Liu, C., & Zheng, C. (2021). Effects of steam explosion pretreatment on the bioactive components and characteristics of rapeseed and rapeseed products. LWT, 143

  • Wijesundera, C., Ceccato, C., Fagan, P., & Shen, Z. (2008). Seed roasting improves the oxidative stability of canola (B. napus) and mustard (B. juncea) seed oils. European Journal of Lipid Science and Technology, 110(4), 360–367. https://doi.org/10.1002/ejlt.200700214

  • **e, Z., Huang, J., Xu, X., & **, Z. (2008). Antioxidant activity of peptides isolated from alfalfa leaf protein hydrolysate. Food Chemistry, 111(2), 370–376. https://doi.org/10.1016/J.FOODCHEM.2008.03.078

    Article  CAS  Google Scholar 

  • Yang, M., Huang, F., Liu, C., Zheng, C., Zhou, Q., & Wang, H. (2013). Influence of microwave treatment of rapeseed on minor components content and oxidative stability of oil. Food and Bioprocess Technology, 6(11), 3206–3216. https://doi.org/10.1007/S11947-012-0987-2/TABLES/3

    Article  CAS  Google Scholar 

  • Yang, M., Zheng, C., Zhou, Q., Liu, C., Li, W., & Huang, F. (2014). Influence of microwaves treatment of rapeseed on phenolic compounds and canolol content. Journal of Agricultural and Food Chemistry, 62(8), 1956–1963. https://doi.org/10.1021/jf4054287

    Article  CAS  Google Scholar 

  • Yu, G., Guo, T., Huang, Q., Shi, X., & Zhou, X. (2020). Preparation of high-quality concentrated fragrance flaxseed oil by steam explosion pretreatment technology. Food Science & Nutrition, 8(4), 2112–2123. https://doi.org/10.1002/FSN3.1505

    Article  CAS  Google Scholar 

  • Zacchi, P., & Eggers, R. (2008). High-temperature pre-conditioning of rapeseed: A polyphenol-enriched oil and the effect of refining. European Journal of Lipid Science and Technology, 110(2), 111–119. https://doi.org/10.1002/ejlt.200700135

    Article  CAS  Google Scholar 

  • Zago, E., Lecomte, J., Barouh, N., Aouf, C., Carré, P., Fine, F., & Villeneuve, P. (2015). Influence of rapeseed meal treatments on its total phenolic content and composition in sinapine, sinapic acid and canolol. Industrial Crops and Products, 76, 1061–1070. https://doi.org/10.1016/j.indcrop.2015.08.022

    Article  CAS  Google Scholar 

  • Zhang, L., Wang, L. J., Jiang, W., & Qian, J. Y. (2017). Effect of pulsed electric field on functional and structural properties of canola protein by pretreating seeds to elevate oil yield. LWT, 84, 73–81. https://doi.org/10.1016/J.LWT.2017.05.048

    Article  CAS  Google Scholar 

  • Zheng, C., Yang, M., Zhou, Q., Liu, C. S., & Huang, F. H. (2014). Changes in the content of canolol and total phenolics, oxidative stability of rapeseed oil during accelerated storage. European Journal of Lipid Science and Technology, 116(12), 1675–1684. https://doi.org/10.1002/EJLT.201300229

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support was provided by Canola Council of Canada, Alberta Canola, SaskCanola and Manitoba Canola Growers Association through the Agri-Science Program (Canola Research Cluster) under the Canadian Agricultural Partnership and Agriculture Development Fund (ADF) Saskatchewan. The authors are grateful for the in-kind supply of canola seeds by Pitura Farms Limited (Domain, Canada). The research expertise on canolol led by Late Usha Thiyam-Hollander, who sadly passed away on 24 December 2020 is acknowledged.

Funding

Canola Agri-Science Cluster funded through Agriculture and Agri-Food Canada’s (AAFC) Canadian Agricultural Partnership (CAP) and the canola industry.

Author information

Authors and Affiliations

Authors

Contributions

Olamide Fadairo conceived the research idea, conducted the experiments, analyzed the results, and wrote the manuscript. Ruchira Nandasiri assisted in running the HPLC analysis and manuscript proofreading. N.A Michael Eskin and Rotimi E. Aluko helped in the review and editing the manuscript. Martin G. Scanlon supervised the study, acquired funding, reviewed, and edited the manuscript.

Corresponding author

Correspondence to Olamide S. Fadairo.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fadairo, O.S., Nandasiri, R., Eskin, N.A.M. et al. Air Frying as a Heat Pre-treatment Method for Improving the Extraction and Yield of Canolol from Canola Seed Oil. Food Bioprocess Technol 16, 639–651 (2023). https://doi.org/10.1007/s11947-022-02961-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-022-02961-7

Keywords

Navigation