Log in

Effects of High Hydrostatic Pressure Treatment: Characterization of Eel (Anguilla japonica) Surimi, Structure, and Angiotensin-Converting Enzyme Inhibitory Activity of Myofibrillar Protein

  • Original Research
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

effects of HHP on the texture properties of eel surimi, eel myofibrillar protein (MP) structure, and angiotensin-converting enzyme (ACE) inhibitory activity were studied. In this study, eel surimi samples were treated with HHP at 100, 200, 300, 400, 500, and 600 MPa. Texture profiling analysis results of eel surimi under HHP (> 400 MPa) showed that the hardness, adhesiveness, and chewiness of surimi had significantly increased compared to control, which greatly improved the quality of surimi. HHP could convert the α-helix and β-sheet to random coil and β-turn, enhancing the contents of the interior hydrophobic and reactive sulfhydryl groups. The hardness, adhesiveness, chewiness, and springiness of surimi showed a negative relationship with the α-helix and β-sheet, and a positive correlation with random coil and β-turn. The ACE inhibitory activity of MP after HHP treatment increased, and the ACE inhibitory activity was highly (76.9%) observed at 300 MPa, which was increased by 16.5% compared with that of the control group. A positive relationship between the hydrophobic and ACE inhibitory activity of MP, and a negative relationship with the β-sheet structure were observed. The overall results suggested that structurally induced changes can be a major cause of the significant enhance of texture of surimi and ACE inhibitory activity of MP under HHP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

References

  • Angioloni, A., & Collar, C. (2013). Impact of high hydrostatic pressure on protein aggregation and rheological properties of legume batters. Food and Bioprocess Technology, 6(12), 3576–3584.

    Article  CAS  Google Scholar 

  • Angsupanich, K., & Ledward, D. A. (1998). High pressure treatment effects on cod (Gadus morhua) muscle. Food Chemistry, 63(1), 39–50.

    Article  CAS  Google Scholar 

  • Bouraoui, M., Nakai, S., & Li-Chan, E. (1997). In situ investigation of protein structure in Pacific whiting surimi and gels using Raman spectroscopy. Food Research International, 30(1), 65–72.

    Article  CAS  Google Scholar 

  • Canto, A. C. V. C. S., Lima, B. R. C. C., Cruz, A. G., Lázaro, C. A., Freitas, D. G. C., Faria, J. A. F., Torrezan, R., Freitas, M. Q., & Silva, T. P. J. (2012). Effect of high hydrostatic pressure on the color and texture parameters of refrigerated Caiman (Caiman crocodilus yacare ) tail meat. Meat Science, 91(3), 255–260.

    Article  CAS  PubMed  Google Scholar 

  • Cao, M. J., Jiang, X. J., Zhong, H. C., Zhang, Z. J., & Su, W. J. (2006). Degradation of myofibrillar proteins by a myofibril-bound serine proteinase in the skeletal muscle of crucian carp (Carasius auratus). Food Chemistry, 94(1), 7–13.

    Article  CAS  Google Scholar 

  • Carlez, A., Veciana-Nogues, T., & Cheftel, J. C. (1995). Changes in colour and myoglobin of minced beef meat due to high pressure processing. Lebensmittel-Wissenschaft und Technologie, 28(5), 528–538.

    Article  CAS  Google Scholar 

  • Cartagena, L., Puértolas, E., & Martínez de Marañón, I. (2019). High-pressure processing (HPP) for decreasing weight loss of fresh albacore (Thunnus alalunga) steaks. Food and Bioprocess Technology, 12(12), 2074–2084.

    Article  CAS  Google Scholar 

  • Cepero-Betancourt, Y., Opazo-Navarrete, M., Janssen, A. E. M., Tabilo-Munizaga, G., & Pérez-Won, M. (2020). Effects of high hydrostatic pressure (HHP) on protein structure and digestibility of red abalone (Haliotis rufescens) muscle. Innovative Food Science & Emerging Technologies, 60, 102282.

    Article  CAS  Google Scholar 

  • Chan, J. T. Y., Omana, D. A., & Betti, M. (2011). Application of high pressure processing to improve the functional properties of pale, soft, and exudative (PSE)-like turkey meat. Innovative Food Science & Emerging Technologies, 12(3), 216–225.

    Article  CAS  Google Scholar 

  • Chapleau, N., Mangavel, C., Compoint, J.-P., & de Lamballerie-Anton, M. (2004). Effect of high-pressure processing on myofibrillar protein structure. Journal of the Science of Food and Agriculture, 84(1), 66–74.

    Article  CAS  Google Scholar 

  • Cheftel, J. C., & Dumay, E. (1998). Effects of high pressure on food biopolymers with special reference to β-lactoglobulin. In D. S. Reid (Ed.), The Properties of Water in Foods ISOPOW 6 (pp. 369–397). Springer US.

  • Chen, H., & Han, M. (2011). Raman spectroscopic study of the effects of microbial transglutaminase on heat-induced gelation of pork myofibrillar proteins and its relationship with textural characteristics. Food Research International, 44(5), 1514–1520.

    Article  CAS  Google Scholar 

  • Chopin, C., Kone, M., & Serot, T. (2007). Study of interaction of fish mysoin with the products of lipid oxidation: the case of aldehydes. Food Chemistry, 105(1), 126–123.

    Article  CAS  Google Scholar 

  • Corrêa, A. P., Daroit, D. J., Coelho, J., Meira, S. M., Lopes, F. C., Segalin, J., Risso, P. H., & Brandelli, A. (2011). Antioxidant, antihypertensive and antimicrobial properties of ovine milk caseinate hydrolyzed with a microbial protease. Journal of the Science of Food and Agriculture, 91(12), 2247–2254.

    PubMed  Google Scholar 

  • Cushman, D. W., & Cheung, H. S. (1971). Spectrophotometric assay and properties of the angiotensin-converting enzyme of rabbit lung. Biochemical Pharmacology, 20(7), 1637–1648.

    Article  CAS  PubMed  Google Scholar 

  • Erkan, N., Uretener, G., Alpas, H., Selcuk, A., Ozden, O., & Buzrul, S. (2011). Effect of high hydrostatic pressure (HHP) treatment on physicochemical properties of horse mackerel (Trachurus trachurus). Food and Bioprocess Technology, 4(7), 1322–1329.

    Article  Google Scholar 

  • Fitzgerald, R. J., Murray, B. A., & Walsh, D. J. (2004). Hypotensive peptides from milk proteins. Journal of Nutrition, 134(4), 980S–988S.

    Article  CAS  PubMed  Google Scholar 

  • Giannakourou, M. C., Stavropoulou, N., Tsironi, T., Lougovois, V., Kyrana, V., Konteles, S. J., & Sinanoglou, V. J. (2020). Application of hurdle technology for the shelf life extension of European eel (Anguilla anguilla) fillets. Aquaculture and Fisheries.

  • Grossi, A., Olsen, K., Bolumar, T., Rinnan, A., Ogendal, L. H., & Orlien, V. (2016). The effect of high pressure on the functional properties of pork myofibrillar proteins. Food Chemistry, 196(1), 1005–1015.

    Article  CAS  PubMed  Google Scholar 

  • Grossi, A., Soltoft-Jensen, J., Knudsen, J. C., Christensen, M., & Orlien, V. (2011). Synergistic cooperation of high pressure and carrot dietary fibre on texture and colour of pork sausages. Meat Science, 89(2), 195–201.

    Article  PubMed  Google Scholar 

  • Guyon, C., Meynier, A., & Lamballerie, M. D. (2016). Protein and lipid oxidation in meat: a review with emphasis on high-pressure treatments. Trends in Food Science & Technology, 50, 131–143.

    Article  CAS  Google Scholar 

  • Han-Jun, M., & Ledward, D. A. (2004). High pressure/thermal treatment effects on the texture of beef muscle. Meat Science, 68(3), 347–355.

    Article  Google Scholar 

  • Haque, E., & Chand, R. (2008). Antihypertensive and antimicrobial bioactive peptides from milk proteins. European Food Research and Technology, 227(1), 7–15.

    Article  CAS  Google Scholar 

  • Herrero, A. M., Cambero, M. I., Ordóñez, J. A., de la Hoza, L., & Carmona, P. (2008). Raman spectroscopy study of the structural effect of microbial transglutaminase on meat systems and its relationship with textural characteristics. Food Chemistry, 109(1), 25–32.

    Article  CAS  PubMed  Google Scholar 

  • Hippauf, F., Huettner, C., Lunow, D., Borchardt, L., Henle, T., & Kaskel, S. (2016). Towards a continuous adsorption process for the enrichment of ACE-inhibiting peptides from food protein hydrolysates. Carbon, 107, 116–123.

    Article  CAS  Google Scholar 

  • Jongberg, S., Gislason, N. E., Lund, M. N., Skibsted, L. H., & Waterhouse, A. L. (2011). Thiol-quinone adduct formation in myofibrillar proteins detected by LC-MS. Journal of Agricultural and Food Chemistry, 59(13), 6900–6905.

    Article  CAS  PubMed  Google Scholar 

  • Knorr, D., Heinz, V., & Buckow, R. (2006). High pressure application for food biopolymers. BBA - Proteins and Proteomics, 1764(3), 619–631.

    Article  CAS  PubMed  Google Scholar 

  • Lambrianidi, L., Savvaidis, I. N., Tsiraki, M. I., & El-obeid, T. (2019). Chitosan and oregano oil treatments, individually or in combination, used to increase the shelf life of vacuum-packaged, refrigerated european eel (Anguilla anguilla) fillets. Journal of Food Protection, 82(8), 1369–1376.

    Article  CAS  PubMed  Google Scholar 

  • Li, Y., Li, X., Wang, J. Z., Zhang, C. H., Sun, H. M., Wang, C. Q., & **e, X. L. (2014). Effects of oxidation on water distribution and physicochemical properties of porcine myofibrillar protein gel. Food Biophysics, 9(2), 169–178.

    Article  Google Scholar 

  • Li, Z., Liu, H., Ma, R., Tang, B., Pan, D., Peng, Y., Ling, X., Wang, Y., Wu, X., Che, L., & He, N. (2018). Changes to the tropomyosin structure alter the angiotensin-converting enzyme inhibitory activity and texture profiles of eel balls under high hydrostatic pressure. Food & Function, 9(12), 6536–6544.

    Google Scholar 

  • Li, C., **ong, Y. L., & Chen, J. (2012). Oxidation-induced unfolding facilitates Myosin cross-linking in myofibrillar protein by microbial transglutaminase. Journal of Agricultural and Food Chemistry, 60(32), 8020–8027.

    Article  CAS  PubMed  Google Scholar 

  • Liu, R., Zhao, S. M., **ong, S. B., **e, B. J., & Qin, L. H. (2008). Role of secondary structures in the gelation of porcine myosin at different pH values. Meat Science, 80(3), 632–639.

    Article  CAS  PubMed  Google Scholar 

  • Ma, Y., Yuan, Y., Bi, X., Zhang, L., **ng, Y., & Che, Z. (2019). Tenderization of yak meat by the combination of papain and high-pressure processing treatments. Food and Bioprocess Technology, 12(4), 681–693.

    Article  CAS  Google Scholar 

  • Monteiro, M. L., Mársico, E. T., Rosenthal, A., & Conte-Junior, C. A. (2019). Synergistic effect of ultraviolet radiation and high hydrostatic pressure on texture, color, and oxidative stability of refrigerated tilapia fillets. Journal of the Science of Food and Agriculture, 99(9), 4474–4481.

    Article  CAS  PubMed  Google Scholar 

  • Nakai, S. (1983). Structure-function relationships of food proteins: with an emphasis on the importance of protein hydrophobicity. Journal of Agricultural and Food Chemistry, 31(4), 676–683.

    Article  CAS  Google Scholar 

  • Norton, T., & Sun, D.-W. (2008). Recent advances in the use of high pressure as an effective processing technique in the food industry. Food and Bioprocess Technology, 1(1), 2–34.

    Article  Google Scholar 

  • Offer, G., & Trinick, J. (1983). On the mechanism of water holding in meat: The swelling and shrinking of myofibrils. Meat Science, 8(4), 245–281.

    Article  CAS  PubMed  Google Scholar 

  • Pan, D., Tang, B., Liu, H., Li, Z., Ma, R., Peng, Y., Wu, X., Che, L., He, N., Ling, X., & Wang, Y. (2020). Effect of High Hydrostatic Pressure (HHP) Processing on immunoreactivity and spatial structure of peanut major allergen Ara h 1. Food and Bioprocess Technology, 13(6), 132–144.

    Article  CAS  Google Scholar 

  • Plancken, I. V. D., Loey, A. V., & Hendrickx, M. E. (2005). Combined effect of high pressure and temperature on selected properties of egg white proteins. Innovative Food Science & Emerging Technologies, 6(1), 11–20.

    Article  CAS  Google Scholar 

  • Rawdkuen, S., Saiut, S., Khamsorn, S., Chaijan, M., & Benjakul, S. (2009). Biochemical and gelling properties of tilapia surimi and protein recovered using an acid-alkaline process. Food Chemistry, 112(1), 112–119.

    Article  CAS  Google Scholar 

  • Sánchez-González, I., Carmona, P., Moreno, P., Borderías, J., Sánchez-Alonso, I., Rodríguez-Casado, A., & Careche, M. (2008). Protein and water structural changes in fish surimi during gelation as revealed by isotopic H/D exchange and Raman spectroscopy. Food Chemistry, 106(2), 56–64.

    Article  CAS  Google Scholar 

  • Sano, T., Ohno, T., Otsukafuchino, H., Matsumoto, J. J., & Tsuchiya, T. (2010). Carp natural actomyosin: thermal denaturation mechanism. Journal of Food Science, 59(5), 1002–1008.

    Article  Google Scholar 

  • Sun-Waterhouse, D. X., Zhao, M. M., & Waterhouse, G. I. N. (2014). Protein modification during ingredient preparation and food processing: approaches to improve food processability and nutrition. Food and Bioprocess Technology, 7(7), 1853–1893.

    Article  CAS  Google Scholar 

  • Tang, C. H., & Sun, X. (2011). A comparative study of physicochemical and conformational properties in three vicilins from Phaseolus legumes: Implications for the structure–function relationship. Food Hydrocolloids, 25(3), 315–324.

    Article  CAS  Google Scholar 

  • Tedford, L. A., Kelly, S. M., Price, N. C., & Schaschke, C. J. (2010). Interactive effects of pressure, temperature and time on the molecular structure of beta-lactoglobulin. Journal of Food Science, 64(3), 396–399.

    Article  Google Scholar 

  • Wang, J. M., Yang, X. Q., Yin, S. W., Zhang, Y., Tang, C. H., Li, B. S., & Guo, J. (2011). Structural rearrangement of ethanol-denatured soy proteins by high hydrostatic pressure treatment. Journal of Agricultural and Food Chemistry, 59(13), 7324–7332.

    Article  CAS  PubMed  Google Scholar 

  • Wang, L., Zhang, M., Bhandari, B., & Yang, C. H. (2018). Investigation on fish surimi gel as promising food material for 3D printing. Journal of Food Engineering, 220, 101–108.

    Article  CAS  Google Scholar 

  • Xu, Y., **a, W., Fang, Y., Nie, X., Xu, Y., **a, W., Fang, Y., & Nie, X. (2010). Protein molecular interactions involved in the gel network formation of fermented silver carp mince inoculated with Pediococcus pentosaceus. Food Chemistry, 120(3), 717–723.

    Article  CAS  Google Scholar 

  • Yagiz, Y., Kristinsson, H. G., Balaban, M. O., & Marshall, M. R. (2010). Effect of high pressure treatment on the quality of rainbow trout (Oncorhynchus mykiss) and mahi mahi (Coryphaena hippurus). Journal of Food Science, 72(9), C509–C515.

    Article  CAS  Google Scholar 

  • Yu, X., Li, Z., Zhao, M., Lau, S. C. S., Ru Tan, H., Teh, W. J., Yang, H., Zheng, C., & Zhang, Y. (2019). Quantification of aflatoxin B1 in vegetable oils using low temperature clean-up followed by immuno-magnetic solid phase extraction. Food Chemistry, 275, 390–396.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Z., Yang, Y., Tang, X., Chen, Y., & You, Y. (2015). Chemical forces and water holding capacity study of heat-induced myofibrillar protein gel as affected by high pressure. Food Chemistry, 188(1), 111–118.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Z., Yang, Y., Zhou, P., Zhang, X., & Wang, J. (2017). Effects of high pressure modification on conformation and gelation properties of myofibrillar protein. Food Chemistry, 217, 678–686.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, X., Wu, J. e., Chen, L., & Yang, H. (2019). Effect of vacuum impregnated fish gelatin and grape seed extract on metabolite profiles of tilapia (Oreochromis niloticus) fillets during storage. Food Chemistry, 293, 418–428.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, Y., & Yang, H. (2020). Enhancing tilapia fish myosin solubility using proline in low ionic strength solution. Food Chemistry, 320, 126665.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by The National Key Research and Development Plan of China (No. 2016YFD0400205), the Natural Science Foundation of Fujian Province of China (No. 2017J01077), the National Natural Science Foundation of China (No. 21736009) and “13th Five-Year” demonstration project (No. 16CZP012SF04).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xue** Ling or Yinghua Lu.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, R., Liu, H., Li, Y. et al. Effects of High Hydrostatic Pressure Treatment: Characterization of Eel (Anguilla japonica) Surimi, Structure, and Angiotensin-Converting Enzyme Inhibitory Activity of Myofibrillar Protein. Food Bioprocess Technol 14, 1631–1639 (2021). https://doi.org/10.1007/s11947-021-02658-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-021-02658-3

Keywords

Navigation