Log in

Brain Metabolism and Structure in Chronic Migraine

  • Chronic Daily Headache (SJ Wang, Section Editor)
  • Published:
Current Pain and Headache Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The purpose of this paper is to review and synthesize current literature in which neurochemical and structural brain imaging were used to investigate chronic migraine (CM) pathophysiology and to further discuss the clinical implications.

Recent Findings

Spectroscopic and structural MRI studies have shown the presence of both impaired metabolism and structural alterations in the brain of CM patients. Metabolic changes in key brain regions support the notion of altered energetics and homeostasis as part of CM pathophysiology. Furthermore, CM, like other chronic pain disorders, may undergo structural reorganization in pain-related brain regions following near persistent endogenous painful input. Finally, both imaging techniques may provide potential biomarkers of disease state and progression and may help guide novel therapeutic interventions or strategies.

Summary

Spectroscopic and structural MRI have revealed novel aspects of CM pathophysiology. Findings from the former support the metabolic theory of migraine pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Dodick DW. Migraine. Lancet. 2018;391(10127):1315–30. https://doi.org/10.1016/s0140-6736(18)30478-1.

    Article  Google Scholar 

  2. May A, Schulte LH. Chronic migraine: risk factors, mechanisms and treatment. Nat Rev Neurol. 2016;12(8):455–64. https://doi.org/10.1038/nrneurol.2016.93.

    Article  CAS  Google Scholar 

  3. Headache Classification Committee of the International Headache Society (IHS) The International Classification of Headache Disorders, 3rd edition. Cephalalgia. 2018;38(1):1–211. https://doi.org/10.1177/0333102417738202.

  4. Zwart JA, Dyb G, Hagen K, Svebak S, Holmen J. Analgesic use: a predictor of chronic pain and medication overuse headache: the head-HUNT study. Neurology. 2003;61:160–4.

    Article  Google Scholar 

  5. Diener HC, Dodick D, Evers S, Holle D, Jensen RH, Lipton RB, et al. Pathophysiology, prevention, and treatment of medication overuse headache. Lancet Neurol. 2019;18(9):891–902. https://doi.org/10.1016/s1474-4422(19)30146-2.

    Article  Google Scholar 

  6. •• Gross EC, Lisicki M, Fischer D, Sándor PS, Schoenen J. The metabolic face of migraine - from pathophysiology to treatment. Nat Rev Neurol. 2019;15:627–43 A comprehensive review of the evidence underlying the metabolic theory of migraine.

    Article  CAS  Google Scholar 

  7. Gasparovic C, Song T, Devier D, Bockholt HJ, Caprihan A, Mullins PG, et al. Use of tissue water as a concentration reference for proton spectroscopic imaging. Magn Reson Med. 2006;55:1219–26.

    Article  CAS  Google Scholar 

  8. Hurd R, Sailasuta N, Srinivasan R, Vigneron DB, Pelletier D, Nelson SJ. Measurement of brain glutamate using TE-averaged PRESS at 3T. Magn Reson Med. 2004;51:435–40.

    Article  CAS  Google Scholar 

  9. Srinivasan R, Cunningham C, Chen A, Vigneron D, Hurd R, Nelson S, et al. TE-averaged two-dimensional proton spectroscopic imaging of glutamate at 3 T. NeuroImage. 2006;30:1171–8.

    Article  Google Scholar 

  10. Tsai SY, Lin YR, Wang WC, Niddam DM. Short- and long-term quantitation reproducibility of brain metabolites in the medial wall using proton echo planar spectroscopic imaging. NeuroImage. 2012;63:1020–9.

    Article  Google Scholar 

  11. Younis S, Hougaard A, Vestergaard MB, Larsson HBW, Ashina M. Migraine and magnetic resonance spectroscopy: a systematic review. Curr Opin Neurol. 2017;30:246–62.

    Article  Google Scholar 

  12. • Bogner W, Otazo R, Accelerated MR HA. Spectroscopic imaging-a review of current and emerging techniques. NMR Biomed. 2020:e4314 A detailed review of the current state of MRSI.

  13. Niddam DM, Tsai SY, Lin YR. Statistical map** of metabolites in the medial wall of the brain: a proton echo planar spectroscopic imaging study. Hum Brain Mapp. 2015;36:852–61.

    Article  Google Scholar 

  14. Lai TH, Fuh JL, Lirng JF, Lin CP, Wang SJ. Brainstem 1H-MR spectroscopy in episodic and chronic migraine. J Headache Pain. 2012;13:645–51.

    Article  CAS  Google Scholar 

  15. Wang SJ, Lirng JF, Fuh JL, Chen JJ. Reduction in hypothalamic 1H-MRS metabolite ratios in patients with cluster headache. J Neurol Neurosurg Psychiatry. 2006;77:622–5. https://doi.org/10.1136/jnnp.2005.081836.

    Article  Google Scholar 

  16. •• Niddam DM, Lai KL, Tsai SY, Lin YR, Chen WT, Fuh JL, et al. Neurochemical changes in the medial wall of the brain in chronic migraine. Brain. 2018;141:377–90 First MRSI study in migraine. Thus study uses both a region-of interest analysis, an exploratory voxcel-wise analysis and neurochemical connectivity analysis to examine the thalamocortical pathway.

    Article  Google Scholar 

  17. • Niddam DM, Lai KL, Tsai SY, Lin YR, Chen WT, Fuh JL, et al. Brain metabolites in chronic migraine patients with medication overuse headache. Cephalalgia. 2020:333102420908579. https://doi.org/10.1177/0333102420908579Recued tCr and tNAA in the thalamus support the notion of altered energy homeostasis in migraine.

  18. Bernstein C, Burstein R. Sensitization of the trigeminovascular pathway: perspective and implications to migraine pathophysiology. J Clin Neurol. 2012;8:89–99.

    Article  Google Scholar 

  19. Noseda R, Burstein R. Advances in understanding the mechanisms of migraine-type photophobia. Curr Opin Neurol. 2011;24:197–202.

    Article  Google Scholar 

  20. • Younis S, Hougaard A, Noseda R, Ashina M. Current understanding of thalamic structure and function in migraine. Cephalalgia. 2019;39(13):1675–82 A review of the role of the thalamus in migraine.

    Article  Google Scholar 

  21. • Rae CD. A guide to the metabolic pathways and function of metabolites observed in human brain 1H magnetic resonance spectra. Neurochem Res. 2014;39:1–36 A comprehensive review of the pathways and functions of the different metabolites in the proton MRS spectrum.

    Article  CAS  Google Scholar 

  22. Demaree HA, Everhart DE, Youngstrom EA, Harrison DW. Brain lateralization of emotional processing: historical roots and a future incorporating "dominance". Behav Cogn Neurosci Rev. 2005;4:3–20.

    Article  Google Scholar 

  23. Rainville P, Duncan GH, Price DD, Carrier B, Bushnell MC. Pain affect encoded in human anterior cingulate but not somatosensory cortex. Science. 1997 Aug 15;277(5328):968–71.

    Article  CAS  Google Scholar 

  24. • Ostojic SM. Creatine loading for chronic migraine? Cephalalgia. 2020:333102420931055. https://doi.org/10.1177/0333102420931055A short article suggesting to use oral creatine supplementation in the treatment of chronic migraine.

  25. Dechent P, Pouwels PJ, Wilken B, Hanefeld F, Frahm J. Increase of total creatine in human brain after oral supplementation of creatine-monohydrate. Am J Phys. 1999;277:698–704.

    Google Scholar 

  26. Lyoo IK, Kong SW, Sung SM, Hirashima F, Parow A, Hennen J, et al. Multinuclear magnetic resonance spectroscopy of high-energy phosphate metabolites in human brain following oral supplementation of creatine-monohydrate. Psychiatry Res. 2003;123:87–100.

    Article  CAS  Google Scholar 

  27. Niddam DM, Wang SJ. Reply to letter to the editor, "Creatine loading for chronic migraine". Cephalalgia. 2020;333102420931051:880–1. https://doi.org/10.1177/0333102420931051.

    Article  Google Scholar 

  28. Fukui S, Matsuno M, Inubushi T, Nosaka S. N-Acetylaspartate concentrations in the thalami of neuropathic pain patients and healthy comparison subjects measured with (1)H-MRS. Magn Reson Imag. 2006;24:75–9.

    Article  CAS  Google Scholar 

  29. Gustin SM, Wrigley PJ, Youssef AM, McIndoe L, Wilcox SL, Rae CD, et al. Thalamic activity and biochemical changes in individuals with neuropathic pain after spinal cord injury. Pain. 2014;155:1027–36.

    Article  CAS  Google Scholar 

  30. Rubinov M, Sporns O. Complex network measures of brain connectivity: uses and interpretations. Neuroimage. 2010;52(3):1059–69. https://doi.org/10.1016/j.neuroimage.2009.10.003.

    Article  Google Scholar 

  31. Mijalkov M, Kakaei E, Pereira JB, Westman E, Volpe G. BRAPH: a graph theory software for the analysis of brain connectivity. PLoS One. 2017;12(8):e0178798. https://doi.org/10.1371/journal.pone.0178798.

    Article  CAS  Google Scholar 

  32. Jeurissen B, Descoteaux M, Mori S, Leemans A. Diffusion MRI fiber tractography of the brain. NMR Biomed. 2019;32(4):e3785. https://doi.org/10.1002/nbm.3785.

    Article  Google Scholar 

  33. Lai TH, Chou KH, Fuh JL, Lee PL, Kung YC, Lin CP, et al. Gray matter changes related to medication overuse in patients with chronic migraine. Cephalalgia. 2016;36(14):1324–33. https://doi.org/10.1177/0333102416630593.

    Article  Google Scholar 

  34. Neeb L, Bastian K, Villringer K, Israel H, Reuter U, Fiebach JB. Structural gray matter alterations in chronic migraine: implications for a progressive disease? Headache. 2017;57(3):400–16. https://doi.org/10.1111/head.13012.

    Article  Google Scholar 

  35. Coppola G, Petolicchio B, Di Renzo A, Tinelli E, Di Lorenzo C, Parisi V, et al. Cerebral gray matter volume in patients with chronic migraine: correlations with clinical features. J Headache Pain. 2017;18(1):115. https://doi.org/10.1186/s10194-017-0825-z.

    Article  Google Scholar 

  36. • Lai KL, Niddam DM, Fuh JL, Chen WT, Wu JC, Wang SJ. Cortical morphological changes in chronic migraine in a Taiwanese cohort: surface- and voxel-based analyses. Cephalalgia. 2020;40(6):575–85. https://doi.org/10.1177/0333102420920005VBM and SBM study in chronic migraine showing cortical thickness changes but no volumetric changes in CM after controlling for numerous factors.

    Article  Google Scholar 

  37. Woldeamanuel YW, DeSouza DD, Sanjanwala BM, Cowan RP. Clinical features contributing to cortical thickness changes in chronic migraine - a pilot study. Headache. 2019;59(2):180–91. https://doi.org/10.1111/head.13452.

    Article  Google Scholar 

  38. DeSouza DD, Woldeamanuel YW, Sanjanwala BM, Bissell DA, Bishop JH, Peretz A, et al. Altered structural brain network topology in chronic migraine. Brain Struct Funct. 2020;225(1):161–72. https://doi.org/10.1007/s00429-019-01994-7.

    Article  Google Scholar 

  39. Planchuelo-Gómez Á, García-Azorín D, Guerrero ÁL, Aja-Fernández S, Rodríguez M, de Luis-García R. Structural connectivity alterations in chronic and episodic migraine: a diffusion magnetic resonance imaging connectomics study. Cephalalgia. 2020;40(4):367–83. https://doi.org/10.1177/0333102419885392.

    Article  Google Scholar 

  40. Maleki N, Becerra L, Brawn J, Bigal M, Burstein R, Borsook D. Concurrent functional and structural cortical alterations in migraine. Cephalalgia. 2012;32(8):607–20. https://doi.org/10.1177/0333102412445622.

    Article  Google Scholar 

  41. Schwedt TJ, Chong CD, Wu T, Gaw N, Fu Y, Li J. Accurate classification of chronic migraine via brain magnetic resonance imaging. Headache. 2015;55(6):762–77. https://doi.org/10.1111/head.12584.

    Article  Google Scholar 

  42. Fumal A, Laureys S, Di Clemente L, Boly M, Bohotin V, Vandenheede M, et al. Orbitofrontal cortex involvement in chronic analgesic-overuse headache evolving from episodic migraine. Brain. 2006;129(Pt 2):543–50. https://doi.org/10.1093/brain/awh691.

    Article  Google Scholar 

  43. Gómez-Beldarrain M, Carrasco M, Bilbao A, García-Moncó JC. Orbitofrontal dysfunction predicts poor prognosis in chronic migraine with medication overuse. J Headache Pain. 2011;12(4):459–66. https://doi.org/10.1007/s10194-011-0340-6.

    Article  Google Scholar 

  44. Biagianti B, Grazzi L, Gambini O, Usai S, Muffatti R, Scarone S, et al. Orbitofrontal dysfunction and medication overuse in patients with migraine. Headache. 2012;52(10):1511–9. https://doi.org/10.1111/j.1526-4610.2012.02277.x.

    Article  Google Scholar 

  45. Lai KL, Niddam DM, Fuh JL, Chen WT, Wu JC, Wang SJ. Reply to letter to the editor: insights into chronic migraine pathophysiology – what measures of gray matter reveal. Cephalalgia. 2020;0(0):0333102420933262. https://doi.org/10.1177/0333102420933262.

    Article  Google Scholar 

  46. Hubbard CS, Becerra L, Smith JH, DeLange JM, Smith RM, Black DF, et al. Brain changes in responders vs. non-responders in chronic migraine: markers of disease reversal. Front Hum Neurosci. 2016;10:497. https://doi.org/10.3389/fnhum.2016.00497.

    Article  CAS  Google Scholar 

  47. Magis D, D'Ostilio K, Thibaut A, De Pasqua V, Gerard P, Hustinx R, et al. Cerebral metabolism before and after external trigeminal nerve stimulation in episodic migraine. Cephalalgia. 2017;37(9):881–91. https://doi.org/10.1177/0333102416656118.

    Article  Google Scholar 

  48. Seminowicz DA, Wideman TH, Naso L, Hatami-Khoroushahi Z, Fallatah S, Ware MA, et al. Effective treatment of chronic low back pain in humans reverses abnormal brain anatomy and function. J Neurosci. 2011;31(20):7540–50. https://doi.org/10.1523/jneurosci.5280-10.2011.

    Article  CAS  Google Scholar 

  49. Rodriguez-Raecke R, Niemeier A, Ihle K, Ruether W, May A. Brain gray matter decrease in chronic pain is the consequence and not the cause of pain. J Neurosci. 2009;29(44):13746–50. https://doi.org/10.1523/jneurosci.3687-09.2009.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David M. Niddam.

Ethics declarations

Conflict of Interest

Kuan-Lin Lai and David M. Niddam declare no conflicts of interest.

Dr. Niddam reports grants from the Ministry of Science and Technology, Taiwan (105-2628-B-010-011-MY2; 107-2314-B-010-018-MY3), and from the Brain Research Center, National Yang-Ming University, from The Featured Areas Research Center Program within the framework of the Higher Education Sprout Project by the Ministry of Education in Taiwan.

Dr. Lai reports grants from the Ministry of Science and Technology, Taiwan (108-2321-B-010-014-MY2; 109-2314-B-075-049); Ministry of Health and Welfare, Taiwan (109-TDU-B-211-114001); and the Brain Research Center, National Yang-Ming University, from The Featured Areas Research Center Program within the framework of the Higher Education Sprout Project by the Ministry of Education in Taiwan.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Chronic Daily Headache

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lai, KL., Niddam, D.M. Brain Metabolism and Structure in Chronic Migraine. Curr Pain Headache Rep 24, 69 (2020). https://doi.org/10.1007/s11916-020-00903-6

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11916-020-00903-6

Keywords

Navigation