Log in

Checkpoint Inhibitors in Bone Metastatic Disease in Solid Tumors

  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Bone is a common site of metastatic spread for solid tumors. Bone as an organ serves unique roles in the body’s structural integrity, hematopoiesis, and the development of immune modulating cells. With the increasing use of immunotherapy, specifically immune checkpoint inhibitors, understanding the response of bone metastases is necessary.

Recent Findings

The data on checkpoint inhibitors used for managing solid tumors are reviewed here with a focus on bone metastases. Albeit with limited available data, there is a trend toward poorer outcomes in this setting, presumably due to the unique immune microenvironment within bone and bone marrow.

Summary

Despite the potential to improve cancer outcomes with use of ICIs, bone metastases remain challenging to manage and may have different responses to ICIs than other disease sites. Areas for future investigation include a nuanced understanding of the bone microenvironment and dedicated research aimed at specific bone metastases outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Cecchini MG, et al. Molecular and Biological Mechanisms of Bone Metastasis. EAU Update Series. 2005;3:214–26.

    Article  Google Scholar 

  2. Selvaggi G, Scagliotti G. Management of bone metastases in cancer: a review. Clin Rev Oncol Hematol. 2005;56:365–78.

    Article  Google Scholar 

  3. Doval DC, et al. Spinal cord compression secondary to bone metastases from hepatocellular carcinoma. World J Gastroenterol. 2006;12(32):5247–52. https://doi.org/10.3748/wjg.v12.i32.5247.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Janjan N. Radiation of bone metastases: conventional techniques and the role of systemic radiopharmaceuticals. Cancer. 1997;80:1628–45.

    Article  CAS  PubMed  Google Scholar 

  5. Body J, Coleman R, Piccart M. Use of bisphosphonates in cancer patients. Cancer Treat Rev. 1996;22:265–87.

    Article  CAS  PubMed  Google Scholar 

  6. Clézardin P. Mechanisms of action of bisphosphonates in oncology: a scientific concept evolving from antiresorptive to anticancer activities. Bonekey Rep. 2013;6(2):267. https://doi.org/10.1038/bonekey.2013.1.

    Article  CAS  Google Scholar 

  7. Coleman R, Hadji P, Body JJ, Santini D, Chow E, Terpos E, Oudard S, Bruland Ø, Flamen P, Kurth A, Van Poznak C, Aapro M, Jordan K; ESMO Guidelines Committee. Electronic address: clinicalguidelines@esmo.org. Bone health in cancer: ESMO clinical practice guidelines. Ann Oncol. 2020. https://doi.org/10.1016/j.annonc.2020.07.019.

  8. J. Couzin-Frankel. Breakthrough of the year 2013. Cancer immunotherapy. Science, 342 (2013):1432–33.

  9. Pardoll D. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12:252–64. https://doi.org/10.1038/nrc3239.

  10. Hodi FS, O'Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, et al. Improved survival with ipilimumab in patients with metastatic melanoma. New England J Med. 2010;363(8):711–23.

    Article  CAS  Google Scholar 

  11. Twomey, J.D., Zhang, B. Cancer Immunotherapy Update: FDA-Approved Checkpoint Inhibitors and Companion Diagnostics. AAPS J 23, 39 (2021). https://doi.org/10.1208/s12248-021-00574-0.

  12. Havel, J.J., Chowell, D. & Chan, T.A. The evolving landscape of biomarkers for checkpoint inhibitor immunotherapy. Nat Rev Cancer 19, 133–150 (2019). https://doi.org/10.1038/s41568-019-0116-x.

  13. Fornetti J, et al. Understanding the Bone in Cancer Metastasis. JBMR. 2018;33:2099–113. https://doi.org/10.1002/jbmr.3618.

    Article  CAS  Google Scholar 

  14. Ewing J. Metastasis, neoplastic disease: a treatise on tumors. London: Philadelphia and London; 1928.

    Google Scholar 

  15. Mori G, D'Amelio P, Faccio R, Brunetti G. The Interplay between the bone and the immune system. Clin Dev Immun. 2013;2013:16. https://doi.org/10.1155/2013/720504.720504.

    Article  Google Scholar 

  16. Li H, Lu Y, Qian J, et al. Human osteoclasts are inducible immunosuppressive cells in response to T cell-derived IFN-γ and CD40 ligand in vitro. J Bone Min Res. 2014;29(12):2666–75. https://doi.org/10.1002/jbmr.2294.

    Article  CAS  Google Scholar 

  17. Baschuk N, Rautela J, Parker BS. Bone specific immunity and its impact on metastasis. BoneKEy Rep. 2015;4:665. https://doi.org/10.1038/bonekey.2015.32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Roato I, Gorassini E, Buffoni L, et al. Spontaneous osteoclastogenesis is a predictive factor for bone metastases from non-small cell lung cancer. Lung Cancer. 2008;61(1):109–16. https://doi.org/10.1016/j.lungcan.2007.10.016.

    Article  CAS  PubMed  Google Scholar 

  19. Mukaida N, Zhang D, Sasaki SI. Emergence of cancer-associated fibroblasts as an indispensable cellular player in bone metastasis process. Cancers. 2020;12(10):2896. https://doi.org/10.3390/cancers12102896.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mundy GR, Guise TA. Hypercalcemia of malignancy. Am J Med. 1997;103:134–45.

    Article  CAS  PubMed  Google Scholar 

  21. Nakashima T, Kobayashi Y, Yamasaki S, et al. Protein expression and functional difference of membrane-bound and soluble receptor activator of NF-κB ligand: modulation of the expression by osteotropic factors and cytokines. Biochem Biophys Res Commun. 2000;275(3):768–75. https://doi.org/10.1006/bbrc.2000.3379.

    Article  CAS  PubMed  Google Scholar 

  22. Zhang S, Wang X, Li G, et al. Osteoclast regulation of osteoblasts via RANK-RANKL reverse signal transduction in vitro. Mol Med Rep. 2017;16(4):3994–4000. https://doi.org/10.3892/mmr.2017.7039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ahern E, Harjunpaa H, O'Donnell JS, et al. RANKL blockade improves efficacy of PD1-PD-L1 blockade or dual PD1-PD-L1 and CTLA4 blockade in mouse models of cancer. Oncoimmunology. 2018;7(6):e1431088. https://doi.org/10.1080/2162402X.2018.1431088.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Todd VM, Johnson RW. Hypoxia in bone metastasis and osteolysis. Cancer Lett. 2020;1(489):144–54.

    Article  Google Scholar 

  25. Chang WH, Lai AG. The hypoxic tumour microenvironment: A safe haven for immunosuppressive cells and a therapeutic barrier to overcome. Cancer Lett. 2020;1(487):34–44.

    Article  Google Scholar 

  26. Cetin K, Christiansen CF, Jacobsen JB, et al. Bone metastasis, skeletal-related events, and mortality in lung cancer patients: a Danish population-based cohort study. Lung Cancer. 2014;86:247–54.

    Article  PubMed  Google Scholar 

  27. Qin A, et al. Bone Metastases, Skeletal-Related Events, and Survival in Patients With Metastatic Non-Small Cell Lung Cancer Treated With Immune Checkpoint Inhibitors. J Natl Compr Canc Netw. 2021;19(8):915–21. https://doi.org/10.6004/jnccn.2020.7668. ICIs represent an important treatment modality in NSCLC and bone metastases with skeletal-related events are common in this patient populatio as well. This is a relatively large cohort study that associated bone metastases at baseline with a worse prognosis in the metastatic NSCLC setting when ICIs were used. Also of note, the use of bone-modifying agents was not associated with improved outcomes.

  28. Li X, et al. Adverse impact of bone metastases on clinical outcomes of patients with advanced non-small cell lung cancer treated with immune checkpoint inhibitors. Thoracic Cancer. 2020;11:2812–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kawachi H, Tamiya M, Tamiya A, et al. Association between metastatic sites and first-line pembrolizumab treatment outcome for advanced non-small cell lung cancer with high PD-L1 expression: a retrospective multicenter cohort study. Invest New Drugs. 2020;38(1):211–8.

    Article  CAS  PubMed  Google Scholar 

  30. Botticelli A, Salati M, di Pietro FR, et al. A nomogram to predict survival in non-small cell lung cancer patients treated with nivolumab. J Transl Med. 2019;17(1). https://doi.org/10.1186/s12967-019-1847-x.

  31. Schmid S, Diem S, Li Q, et al. Organ-specific response to nivolumab in patients with non-small cell lung cancer (NSCLC). Cancer Immunol Immunother. 2018;67:1825–32. https://doi.org/10.1007/s00262-018-2239-4.

    Article  CAS  PubMed  Google Scholar 

  32. Asano Y, Yamamoto N, Hayashi K, et al. Complete response of bone metastasis in non-small cell lung cancer with pembrolizumab: two case reports. Anticancer Res. 2021;41(3):1693–9.

    Article  PubMed  Google Scholar 

  33. Sengelov L, Kamby C, von der Maase H. Pattern of metastases in relation to characteristics of primary tumor and treatment in patients with disseminated urothelial carcinoma. J Urol. 1996;155:111–1.

    Article  CAS  PubMed  Google Scholar 

  34. Raggi D, et al. Role of Bone Metastases in Patients Receiving Immunotherapy for Pre-Treated Urothelial Carcinoma: The Multicentre, Retrospective Meet-URO-1 Bone Study. Clin Genitour Cancer. 2022;20:155–64. This study identified 208 patients with metastatic urothelial carcinoma and 86 of these patients did have bone metastases. Treatment rendered included single-agent ICIs. Presence of bone metastases was asosciated with shorter overall survival and progression-free survival. This highlights both a larger study with bone metastases as a potentially prognostic factor with ICI use and the need for improved understanding of the mechanism for these outcomes.

  35. Huang JF, Shen J, Li X, Rengan R, Silvestris N, Wang M, Derosa L, Zheng X, Belli A, Zhang XL, Li YM, Wu A. Incidence of patients with bone metastases at diagnosis of solid tumors in adults: a large population-based study. Ann Transl Med. 2020;8(7):482. https://doi.org/10.21037/atm.2020.03.55.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Beer TM, Kwon ED, Drake CG, et al. Randomized, double-blind, phase III trial of ipilimumab versus placebo in asymptomatic or minimally symptomatic patients with metastatic chemotherapy-naive castration-resistant prostate cancer. J Clin Oncol. 2017;35(1):40–7.

    Article  CAS  PubMed  Google Scholar 

  37. Kwon ED, Drake CG, Scher HI, et al. Ipilimumab versus placebo after radiotherapy in patients with metastatic castration-resistant prostate cancer that had progressed after docetaxel chemotherapy (CA184-043): a multicentre, randomised, double-blind, phase 3 trial. Lancet Oncol. 2014;15(7):700–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Stultz J, Fong L. How to turn up the heat on the cold immune microenvironment of metastatic prostate cancer. Prostate Cancer Prostatic Dis. 2021;24:697–717. https://doi.org/10.1038/s41391-021-00340-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. He Y, Cao J, et al. TIM-3, a promising target for cancer immunotherapy. OncoTargets Therapy. 11:7005–9. https://doi.org/10.2147/OTT.S170385.

  40. Das M, Zhu C, Kuchroo VK. Tim-3 and its role in regulating anti-tumor immunity. Immunol Rev. 2017;276(1):97–111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Dixon-Douglas J, et al. Integrating Immunotherapy Into the Treatment Landscape for Patients With Triple-Negative Breast Cancer. Am Soc Clin Oncol Educ Book. 2022;42:47–59.

    Article  Google Scholar 

  42. Luke JJ, Patel MR, Hamilton EP, et al. A phase I, first-in-human, open-label, dose-escalation study of MGD013, a bispecific DART molecule binding PD-1 and LAG-3, in patients with unresectable or metastatic neoplasms. J Clin Oncol. 2020;38(15):3004–4.

    Article  Google Scholar 

  43. Seymour L, et al. RECIST working group. iRECIST: guidelines for response criteria for use in trials testing immunotherapeutics. Lancet Oncol. 2017 18(3):e143–e152.  https://doi.org/10.1016/S1470-2045(17)30074-8

  44. Lagos GG, et al. Beyond Tumor PD-L1: Emerging Genomic Biomarkers for Checkpoint Inhibitor Immunotherapy. Am Soc Clin Oncol Educ Book. 2020;40:e47–57. This reference provides an excellent summary of the limitations and imperfections of PD-L1 expression as a biomarker for ICI use and highlights other specific tumor suppressor genes and oncogenes under investigation as biomarkers for both ICI response and resistance in an effort to furter clinical utility of ICIs and their benefit in an individual patient.

  45. Hong L, Negrao MV, Dibaj SS, et al. Programmed death-ligand 1 heterogeneity and its impact on benefit from immune checkpoint inhibitors in NSCLC. J Thoracic Oncol. 2020;15(9):1449–59.

    Article  CAS  Google Scholar 

  46. Baschuk N, et al. Bone specific immunity and its impact on metastasis. Bonekey Rep. 2015;15(4):665. https://doi.org/10.1038/bonekey.2015.32.

    Article  CAS  Google Scholar 

  47. Satcher RL, Zhang XH. Evolving cancer-niche interactions and therapeutic targets during bone metastasis. Nat Rev Cancer. 2022 ;22(2):85–101.  https://doi.org/10.1038/s41568-021-00406-5

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victoria Wytiaz.

Ethics declarations

Conflict of Interest

The authors have no competing interests to declare that are relevant to the content of this article.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wytiaz, V., Van Poznak, C. Checkpoint Inhibitors in Bone Metastatic Disease in Solid Tumors. Curr Osteoporos Rep 21, 323–329 (2023). https://doi.org/10.1007/s11914-023-00798-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-023-00798-3

Keywords

Navigation