Log in

Biological Rationale for Peripheral Blood Cell–Derived Inflammatory Indices and Related Prognostic Scores in Patients with Advanced Non-Small-Cell Lung Cancer

  • Lung Cancer (H Borghaei, Section Editor)
  • Published:
Current Oncology Reports Aims and scope Submit manuscript

Abstract

Purpose of review

To describe the biological rationale of peripheral blood cells (PBC)–derived inflammatory indexes and assess the related prognostic scores for patients with advanced non-small cell lung cancer (aNSCLC) treated with immune-checkpoint inhibitors (ICI).

Recent findings

Inflammatory indexes based on PBC may indicate a pro-inflammatory condition affecting the immune response to cancer. The lung immune prognostic index (LIPI), consisting of derived neutrophils-to-lymphocyte ratio (NLR) and lactate dehydrogenase, is a validated prognostic tool, especially for pretreated aNSCLC patients, where the combination of NLR and PD-L1 tumour expression might also be predictive of immunotherapy benefit. In untreated high-PD-L1 aNSCLC patients, the Lung-Immune-Prognostic score (LIPS), including NLR, ECOG PS and concomitant steroids, is prognostic, and its modified version might indicate patients with favourable outcomes despite an ECOG PS of 2. NLR times platelets (i.e., SII), included in the NHS-Lung score, might improve the prognostication for combined chemoimmunotherapy.

Summary

PBC-derived inflammatory indexes and related scores represent accurate, reproducible and non-expensive prognostic tools with clinical and research utility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Mantovani A, Allavena P, Sica A, Balkwill F. Cancer-related inflammation. Nature. 2008;454(7203):436–44. https://doi.org/10.1038/nature07205.

    Article  CAS  PubMed  Google Scholar 

  2. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74. https://doi.org/10.1016/j.cell.2011.02.013.

    Article  CAS  PubMed  Google Scholar 

  3. Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer. Cell. 2010;140(6):883–99. https://doi.org/10.1016/j.cell.2010.01.025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Negrini S, Gorgoulis VG, Halazonetis TD. Genomic instability—an evolving hallmark of cancer. Nat Rev Mol Cell Biol. 2010;11(3):220–8. https://doi.org/10.1038/nrm2858.

    Article  CAS  PubMed  Google Scholar 

  5. Colotta F, Allavena P, Sica A, Garlanda C, Mantovani A. Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability. Carcinogenesis. 2009;30(7):1073–81. https://doi.org/10.1093/carcin/bgp127.

    Article  CAS  PubMed  Google Scholar 

  6. Qian BZ, Pollard JW. Macrophage diversity enhances tumor progression and metastasis. Cell. 2010;141(1):39–51. https://doi.org/10.1016/j.cell.2010.03.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mougiakakos D, Choudhury A, Lladser A, Kiessling R, Johansson CC. Chapter 3 - Regulatory T cells in cancer. In: Vande Woude GF, Klein G, editors. Advances in Cancer Research. Academic Press; 2010. p. 57–117.

    Google Scholar 

  8. Hiam-Galvez KJ, Allen BM, Spitzer MH. Systemic immunity in cancer. Nat Rev Cancer. 2021;21(6):345–59. https://doi.org/10.1038/s41568-021-00347-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Guner A, Kim HI. Biomarkers for evaluating the inflammation status in patients with cancer. J Gastric Cancer. 2019;19(3):254–77. https://doi.org/10.5230/jgc.2019.19.e29.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Mezquita L, Auclin E, Ferrara R, Charrier M, Remon J, Planchard D, et al. Association of the lung immune prognostic index with immune checkpoint inhibitor outcomes in patients with advanced non-small cell lung cancer. JAMA Oncol. 2018;4(3):351–7. https://doi.org/10.1001/jamaoncol.2017.4771.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kazandjian D, Gong Y, Keegan P, Pazdur R, Blumenthal GM. Prognostic value of the lung immune prognostic index for patients treated for metastatic non-small cell lung cancer. JAMA Oncol. 2019;5(10):1481–5. https://doi.org/10.1001/jamaoncol.2019.1747. This study validated the lung immune prognostic index in patients with pretreated aNSCLC by a pooled analysis of randomised controlled trials with immunotherapy.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Wang Y, Li Y, Chen P, Xu W, Wu Y, Che G. Prognostic value of the pretreatment systemic immune-inflammation index (SII) in patients with non-small cell lung cancer: a meta-analysis. Ann Transl Med. 2019;7(18):433. https://doi.org/10.21037/atm.2019.08.116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lim JU, Yeo CD, Kang HS, Park CK, Kim JS, Kim JW, et al. Elevated pretreatment platelet-to-lymphocyte ratio is associated with poor survival in stage IV non-small cell lung cancer with malignant pleural effusion. Sci Rep. 2019;9(1):4721. https://doi.org/10.1038/s41598-019-41289-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Medzhitov R. Inflammation 2010: new adventures of an old flame. Cell. 2010;140(6):771–6. https://doi.org/10.1016/j.cell.2010.03.006.

    Article  CAS  PubMed  Google Scholar 

  15. Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell. 2006;124(4):783–801. https://doi.org/10.1016/j.cell.2006.02.015.

    Article  CAS  PubMed  Google Scholar 

  16. Yano S, Nokihara H, Yamamoto A, Goto H, Ogawa H, Kanematsu T, et al. Multifunctional interleukin-1beta promotes metastasis of human lung cancer cells in SCID mice via enhanced expression of adhesion-, invasion- and angiogenesis-related molecules. Cancer Sci. 2003;94(3):244–52. https://doi.org/10.1111/j.1349-7006.2003.tb01428.x.

    Article  CAS  PubMed  Google Scholar 

  17. Greten FR, Grivennikov SI. Inflammation and cancer: triggers, mechanisms, and consequences. Immunity. 2019;51(1):27–41. https://doi.org/10.1016/j.immuni.2019.06.025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Joyce JA, Fearon DT. T cell exclusion, immune privilege, and the tumor microenvironment. Science. 2015;348(6230):74–80. https://doi.org/10.1126/science.aaa6204.

    Article  CAS  PubMed  Google Scholar 

  19. ** MZ, ** WL. The updated landscape of tumor microenvironment and drug repurposing. Signal Transduct Target Ther. 2020;5(1):166. https://doi.org/10.1038/s41392-020-00280-x.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Bunt SK, Sinha P, Clements VK, Leips J, Ostrand-Rosenberg S. Inflammation induces myeloid-derived suppressor cells that facilitate tumor progression. J Immunol. 2006;176(1):284–90. https://doi.org/10.4049/jimmunol.176.1.284.

    Article  CAS  PubMed  Google Scholar 

  21. Chen L, Huang CF, Li YC, Deng WW, Mao L, Wu L, et al. Blockage of the NLRP3 inflammasome by MCC950 improves anti-tumor immune responses in head and neck squamous cell carcinoma. Cell Mol Life Sci. 2018;75(11):2045–58. https://doi.org/10.1007/s00018-017-2720-9.

    Article  CAS  PubMed  Google Scholar 

  22. Chaudhry SI, Hooper S, Nye E, Williamson P, Harrington K, Sahai E. Autocrine IL-1beta-TRAF6 signalling promotes squamous cell carcinoma invasion through paracrine TNFalpha signalling to carcinoma-associated fibroblasts. Oncogene. 2013;32(6):747–58. https://doi.org/10.1038/onc.2012.91.

    Article  CAS  PubMed  Google Scholar 

  23. Taniguchi K, Karin M. NF-kappaB, inflammation, immunity and cancer: coming of age. Nat Rev Immunol. 2018;18(5):309–24. https://doi.org/10.1038/nri.2017.142.

    Article  CAS  PubMed  Google Scholar 

  24. Elaraj DM, Weinreich DM, Varghese S, Puhlmann M, Hewitt SM, Carroll NM, et al. The role of interleukin 1 in growth and metastasis of human cancer xenografts. Clin Cancer Res. 2006;12(4):1088–96. https://doi.org/10.1158/1078-0432.CCR-05-1603.

    Article  CAS  PubMed  Google Scholar 

  25. Kim JW, Koh Y, Kim DW, Ahn YO, Kim TM, Han SW, et al. Clinical Implications of VEGF, TGF-beta1, and IL-1beta in Patients with advanced non-small cell lung cancer. Cancer Res Treat. 2013;45(4):325–33. https://doi.org/10.4143/crt.2013.45.4.325.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Millares L, Barreiro E, Cortes R, Martinez-Romero A, Balcells C, Cascante M, et al. Tumor-associated metabolic and inflammatory responses in early stage non-small cell lung cancer: local patterns and prognostic significance. Lung Cancer. 2018;122:124–30. https://doi.org/10.1016/j.lungcan.2018.06.015.

    Article  PubMed  Google Scholar 

  27. de Visser KE, Coussens LM. The inflammatory tumor microenvironment and its impact on cancer development. Contrib Microbiol. 2006;13:118–37. https://doi.org/10.1159/000092969.

    Article  PubMed  Google Scholar 

  28. Allavena P, Sica A, Solinas G, Porta C, Mantovani A. The inflammatory micro-environment in tumor progression: the role of tumor-associated macrophages. Crit Rev Oncol Hematol. 2008;66(1):1–9. https://doi.org/10.1016/j.critrevonc.2007.07.004.

    Article  PubMed  Google Scholar 

  29. Balkwill FR, Capasso M, Hagemann T. The tumor microenvironment at a glance. J Cell Sci. 2012;125(Pt 23):5591–6. https://doi.org/10.1242/jcs.116392.

    Article  CAS  PubMed  Google Scholar 

  30. Jang JH, Kim DH, Surh YJ. Dynamic roles of inflammasomes in inflammatory tumor microenvironment. NPJ Precis Oncol. 2021;5(1):18. https://doi.org/10.1038/s41698-021-00154-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Leach M. Interpretation of the full blood count in systemic disease—a guide for the physician. J R Coll Phys Edinb. 2014;44(1):36–41. https://doi.org/10.4997/JRCPE.2014.109.

    Article  CAS  Google Scholar 

  32. Velioglu Y, Yuksel A. Complete blood count parameters in peripheral arterial disease. Aging Male. 2019;22(3):187–91. https://doi.org/10.1080/13685538.2019.1588873.

    Article  CAS  PubMed  Google Scholar 

  33. Zinellu A, Paliogiannis P, Sotgiu E, Mellino S, Mangoni AA, Zinellu E, et al. Blood Cell count derived inflammation indexes in patients with idiopathic pulmonary fibrosis. Lung. 2020;198(5):821–7. https://doi.org/10.1007/s00408-020-00386-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Guthrie GJ, Charles KA, Roxburgh CS, Horgan PG, McMillan DC, Clarke SJ. The systemic inflammation-based neutrophil-lymphocyte ratio: experience in patients with cancer. Crit Rev Oncol Hematol. 2013;88(1):218–30. https://doi.org/10.1016/j.critrevonc.2013.03.010.

    Article  PubMed  Google Scholar 

  35. Sacdalan DB, Lucero JA, Sacdalan DL. Prognostic utility of baseline neutrophil-to-lymphocyte ratio in patients receiving immune checkpoint inhibitors: a review and meta-analysis. Onco Targets Ther. 2018;11:955–65. https://doi.org/10.2147/OTT.S153290.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Diakos CI, Charles KA, McMillan DC, Clarke SJ. Cancer-related inflammation and treatment effectiveness. Lancet Oncol. 2014;15(11):e493-503. https://doi.org/10.1016/S1470-2045(14)70263-3.

    Article  PubMed  Google Scholar 

  37. Moses K, Brandau S. Human neutrophils: their role in cancer and relation to myeloid-derived suppressor cells. Semin Immunol. 2016;28(2):187–96. https://doi.org/10.1016/j.smim.2016.03.018.

    Article  CAS  PubMed  Google Scholar 

  38. Coffelt SB, Wellenstein MD, de Visser KE. Neutrophils in cancer: neutral no more. Nat Rev Cancer. 2016;16(7):431–46. https://doi.org/10.1038/nrc.2016.52.

    Article  CAS  PubMed  Google Scholar 

  39. Park S, Zhu J, Altan-Bonnet G, Cheng SY. Monocyte recruitment and activated inflammation are associated with thyroid carcinogenesis in a mouse model. Am J Cancer Res. 2019;9(7):1439–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Ostroumov D, Fekete-Drimusz N, Saborowski M, Kuhnel F, Woller N. CD4 and CD8 T lymphocyte interplay in controlling tumor growth. Cell Mol Life Sci. 2018;75(4):689–713. https://doi.org/10.1007/s00018-017-2686-7.

    Article  CAS  PubMed  Google Scholar 

  41. Schmied L, Hoglund P, Meinke S. Platelet-Mediated protection of cancer cells from immune surveillance—possible implications for cancer immunotherapy. Front Immunol. 2021;12: 640578. https://doi.org/10.3389/fimmu.2021.640578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Goubran HA, Stakiw J, Radosevic M, Burnouf T. Platelets effects on tumor growth. Semin Oncol. 2014;41(3):359–69. https://doi.org/10.1053/j.seminoncol.2014.04.006.

    Article  CAS  PubMed  Google Scholar 

  43. Prager GW, Poettler M, Unseld M, Zielinski CC. Angiogenesis in cancer: Anti-VEGF escape mechanisms. Transl Lung Cancer Res. 2012;1(1):14–25. https://doi.org/10.3978/j.issn.2218-6751.2011.11.02.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Stoiber D, Assinger A. Platelet-leukocyte interplay in cancer development and progression. Cells. 2020;9(4). https://doi.org/10.3390/cells9040855.

  45. Lefrancais E, Ortiz-Munoz G, Caudrillier A, Mallavia B, Liu F, Sayah DM, et al. The lung is a site of platelet biogenesis and a reservoir for haematopoietic progenitors. Nature. 2017;544(7648):105–9. https://doi.org/10.1038/nature21706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Rodriguez-Martinez A, Simon-Saez I, Perales S, Garrido-Navas C, Russo A, de Miguel-Perez D, et al. Exchange of cellular components between platelets and tumor cells: impact on tumor cells behavior. Theranostics. 2022;12(5):2150–61. https://doi.org/10.7150/thno.64252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. In ’t Veld S, Wurdinger T. Tumor-educated platelets. Blood. 2019;133(22):2359–64. https://doi.org/10.1182/blood-2018-12-852830.

    Article  CAS  PubMed  Google Scholar 

  48. Peng B, Wang YH, Liu YM, Ma LX. Prognostic significance of the neutrophil to lymphocyte ratio in patients with non-small cell lung cancer: a systemic review and meta-analysis. Int J Clin Exp Med. 2015;8(3):3098–106.

    PubMed  PubMed Central  Google Scholar 

  49. Gu XB, Tian T, Tian XJ, Zhang XJ. Prognostic significance of neutrophil-to-lymphocyte ratio in non-small cell lung cancer: a meta-analysis. Sci Rep. 2015;5:12493. https://doi.org/10.1038/srep12493.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Templeton AJ, McNamara MG, Seruga B, Vera-Badillo FE, Aneja P, Ocana A, et al. Prognostic role of neutrophil-to-lymphocyte ratio in solid tumors: a systematic review and meta-analysis. J Natl Cancer Inst. 2014;106(6):dju124. https://doi.org/10.1093/jnci/dju124.

    Article  CAS  PubMed  Google Scholar 

  51. Jiang T, Bai Y, Zhou F, Li W, Gao G, Su C, et al. Clinical value of neutrophil-to-lymphocyte ratio in patients with non-small-cell lung cancer treated with PD-1/PD-L1 inhibitors. Lung Cancer. 2019;130:76–83. https://doi.org/10.1016/j.lungcan.2019.02.009.

    Article  PubMed  Google Scholar 

  52. Nakaya A, Kurata T, Yoshioka H, Takeyasu Y, Niki M, Kibata K, et al. Neutrophil-to-lymphocyte ratio as an early marker of outcomes in patients with advanced non-small-cell lung cancer treated with nivolumab. Int J Clin Oncol. 2018;23(4):634–40. https://doi.org/10.1007/s10147-018-1250-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Li M, Spakowicz D, Burkart J, Patel S, Husain M, He K, et al. Change in neutrophil to lymphocyte ratio during immunotherapy treatment is a non-linear predictor of patient outcomes in advanced cancers. J Cancer Res Clin Oncol. 2019;145(10):2541–6. https://doi.org/10.1007/s00432-019-02982-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhang N, Jiang J, Tang S, Sun G. Predictive value of neutrophil-lymphocyte ratio and platelet-lymphocyte ratio in non-small cell lung cancer patients treated with immune checkpoint inhibitors: a meta-analysis. Int Immunopharmacol. 2020;85: 106677. https://doi.org/10.1016/j.intimp.2020.106677.

    Article  CAS  PubMed  Google Scholar 

  55. Xu H, He A, Liu A, Tong W, Cao D. Evaluation of the prognostic role of platelet-lymphocyte ratio in cancer patients treated with immune checkpoint inhibitors: a systematic review and meta-analysis. Int Immunopharmacol. 2019;77: 105957. https://doi.org/10.1016/j.intimp.2019.105957.

    Article  CAS  PubMed  Google Scholar 

  56. Jiang M, Peng W, Pu X, Chen B, Li J, Xu F, et al. Peripheral blood biomarkers associated with outcome in non-small cell lung cancer patients treated with nivolumab and durvalumab monotherapy. Front Oncol. 2020;10:913. https://doi.org/10.3389/fonc.2020.00913.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Wang Y, Huang D, Xu WY, Wang YW, Che GW. Prognostic value of pretreatment lymphocyte-to-monocyte ratio in non-small cell lung cancer: a meta-analysis. Oncol Res Treat. 2019;42(10):523–31. https://doi.org/10.1159/000501726.

    Article  PubMed  Google Scholar 

  58. Katayama Y, Yamada T, Chihara Y, Tanaka S, Tanimura K, Okura N, et al. Significance of inflammatory indexes in atezolizumab monotherapy outcomes in previously treated non-small-cell lung cancer patients. Sci Rep. 2020;10(1):17495. https://doi.org/10.1038/s41598-020-74573-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Sekine K, Kanda S, Goto Y, Horinouchi H, Fujiwara Y, Yamamoto N, et al. Change in the lymphocyte-to-monocyte ratio is an early surrogate marker of the efficacy of nivolumab monotherapy in advanced non-small-cell lung cancer. Lung Cancer. 2018;124:179–88. https://doi.org/10.1016/j.lungcan.2018.08.012.

    Article  PubMed  Google Scholar 

  60. Sanchez-Gastaldo A, Munoz-Fuentes MA, Molina-Pinelo S, Alonso-Garcia M, Boyero L, Bernabe-Caro R. Correlation of peripheral blood biomarkers with clinical outcomes in NSCLC patients with high PD-L1 expression treated with pembrolizumab. Transl Lung Cancer Res. 2021;10(6):2509–22. https://doi.org/10.21037/tlcr-21-156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Park W, Kwon D, Saravia D, Desai A, Vargas F, El Dinali M, et al. Develo** a Predictive model for clinical outcomes of advanced non-small cell lung cancer patients treated with nivolumab. Clin Lung Cancer. 2018;19(3):280-8 e4. https://doi.org/10.1016/j.cllc.2017.12.007.

    Article  CAS  PubMed  Google Scholar 

  62. Park W, Mezquita L, Okabe N, Chae YK, Kwon D, Saravia D, et al. Association of the prognostic model iSEND with PD-1/L1 monotherapy outcome in non-small-cell lung cancer. Br J Cancer. 2020;122(3):340–7. https://doi.org/10.1038/s41416-019-0643-y.

    Article  CAS  PubMed  Google Scholar 

  63. Kasahara N, Sunaga N, Tsukagoshi Y, Miura Y, Sakurai R, Kitahara S, et al. Post-treatment glasgow prognostic score predicts efficacy in advanced non-small-cell lung cancer treated with anti-PD1. Anticancer Res. 2019;39(3):1455–61. https://doi.org/10.21873/anticanres.13262.

    Article  CAS  PubMed  Google Scholar 

  64. Naqash AR, Stroud CRG, Butt MU, Dy GK, Hegde A, Muzaffar M, et al. Co-relation of overall survival with peripheral blood-based inflammatory biomarkers in advanced stage non-small cell lung cancer treated with anti-programmed cell death-1 therapy: results from a single institutional database. Acta Oncol. 2018;57(6):867–72. https://doi.org/10.1080/0284186X.2017.1415460.

    Article  PubMed  Google Scholar 

  65. Minami S, Ihara S, Ikuta S, Komuta K. Gustave Roussy immune score and royal marsden hospital prognostic score are biomarkers of immune-checkpoint inhibitor for non-small cell lung cancer. World J Oncol. 2019;10(2):90–100. https://doi.org/10.14740/wjon1193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wu Y, Wu H, Lin M, Liu T, Li J. Factors associated with immunotherapy respond and survival in advanced non-small cell lung cancer patients. Transl Oncol. 2022;15(1): 101268. https://doi.org/10.1016/j.tranon.2021.101268.

    Article  CAS  PubMed  Google Scholar 

  67. Prelaj A, Lo Russo G, Proto C, Signorelli D, Ferrara R, Galli G, et al. DiM: prognostic score for second- or further-line immunotherapy in advanced non-small-cell lung cancer: an external validation. Clin Lung Cancer. 2020;21(5):e337–48. https://doi.org/10.1016/j.cllc.2020.01.005.

    Article  CAS  PubMed  Google Scholar 

  68. Dimitrakopoulos FI, Nikolakopoulos A, Kottorou A, Kalofonou F, Liolis E, Frantzi T, et al. PIOS (Patras Immunotherapy Score) score is associated with best overall response, progression-free survival, and post-immunotherapy overall survival in patients with advanced non-small-cell lung cancer (NSCLC) treated with anti-program cell death-1 (PD-1) inhibitors. Cancers. 2020;12(5). https://doi.org/10.3390/cancers12051257.

  69. Mountzios G, Samantas E, Senghas K, Zervas E, Krisam J, Samitas K, et al. Association of the advanced lung cancer inflammation index (ALI) with immune checkpoint inhibitor efficacy in patients with advanced non-small-cell lung cancer. ESMO Open. 2021;6(5): 100254. https://doi.org/10.1016/j.esmoop.2021.100254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Li C, Shi M, Lin X, Zhang Y, Yu S, Zhou C, et al. Novel risk scoring system for immune checkpoint inhibitors treatment in non-small cell lung cancer. Transl Lung Cancer Res. 2021;10(2):776–89. https://doi.org/10.21037/tlcr-20-832.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Tang Y, Cui Y, Li LL, Guan YP, Feng DF, Yin BB, et al. Dynamics of early serum tumour markers and neutrophil-to-lymphocyte ratio predict response to PD-1/PD-L1 inhibitors in advanced non-small-cell lung cancer. Cancer Manag Res. 2021;13:8241–55. https://doi.org/10.2147/CMAR.S329963.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Song P, Yang D, Cui X, Wang H, Si X, Zhang X, et al. NLCIPS: non-small cell lung cancer immunotherapy prognosis score. Cancer Manag Res. 2020;12:5975–85. https://doi.org/10.2147/CMAR.S257967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ruiz-Banobre J, Areses-Manrique MC, Mosquera-Martinez J, Cortegoso A, Afonso-Afonso FJ, de Dios-Alvarez N, et al. Evaluation of the lung immune prognostic index in advanced non-small cell lung cancer patients under nivolumab monotherapy. Transl Lung Cancer Res. 2019;8(6):1078–85. https://doi.org/10.21037/tlcr.2019.11.07.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Sorich MJ, Rowland A, Karapetis CS, Hopkins AM. Evaluation of the lung immune prognostic index for prediction of survival and response in patients treated with atezolizumab for NSCLC: pooled analysis of clinical trials. J Thoracic Oncol. 2019;14(8):1440–6. https://doi.org/10.1016/j.jtho.2019.04.006. This study validated the lung immune prognostic index in patients with pretreated aNSCLC by a pooled analysis of randomised controlled trials with atezolizumab.

    Article  CAS  Google Scholar 

  75. Moor R, Roberts K, Mason R, Ladwa R, Lwin Z, Hughes B, et al. P1.01–119 Modified Lung Immune Prognostic Index (mLIPI) as a predictive tool of nivolumab outcomes in advanced NSCLC patients. J Thoracic Oncol. 2019;14(10, Supplement):S408–9. https://doi.org/10.1016/j.jtho.2019.08.834.

    Article  Google Scholar 

  76. Cortellini A, Ricciuti B, Borghaei H, Naqash AR, D'Alessio A, Fulgenzi CAM, et al. Differential prognostic effect of systemic inflammation in patients with non-small cell lung cancer treated with immunotherapy or chemotherapy: a post hoc analysis of the phase 3 OAK trial. Cancer. 2022. https://doi.org/10.1002/cncr.34348. This post-hoc analysis of a randomised controlled trial with atezolizumab for pretreated aNSCLC showed a potential predictive factor for treatment with atezolizumab of the combination of NLR and PD-L1 tumour expression.

  77. Prelaj A, Ferrara R, Rebuzzi SE, Proto C, Signorelli D, Galli G, et al. EPSILoN: a prognostic score for immunotherapy in advanced non-small-cell lung cancer: a validation cohort. Cancers. 2019;11(12). https://doi.org/10.3390/cancers11121954.

  78. Prelaj A, Rebuzzi SE, Pizzutilo P, Bilancia M, Montrone M, Pesola F, et al. EPSILoN: a prognostic score using clinical and blood biomarkers in advanced non-small-cell lung cancer treated with immunotherapy. Clin Lung Cancer. 2020;21(4):365-77 e5. https://doi.org/10.1016/j.cllc.2019.11.017.

    Article  CAS  PubMed  Google Scholar 

  79. Hopkins AM, Kichenadasse G, Garrett-Mayer E, Karapetis CS, Rowland A, Sorich MJ. Development and validation of a prognostic model for patients with advanced lung cancer treated with the immune checkpoint inhibitor atezolizumab. Clin Cancer Res. 2020;26(13):3280–6. https://doi.org/10.1158/1078-0432.CCR-19-2968.

    Article  CAS  PubMed  Google Scholar 

  80. Bigot F, Castanon E, Baldini C, Hollebecque A, Carmona A, Postel-Vinay S, et al. Prospective validation of a prognostic score for patients in immunotherapy phase I trials: The Gustave Roussy Immune Score (GRIm-Score). Eur J Cancer. 2017;84:212–8. https://doi.org/10.1016/j.ejca.2017.07.027.

    Article  CAS  PubMed  Google Scholar 

  81. Mielgo Rubio X, Gomez Rueda A, Antoñanzas M, Falagan S, Núñez JA, Sánchez Peña AM, et al. 1509P—applicability of lung immune prognostic index (LIPI) to predict efficacy of first-line pembrolizumab in advanced non-small cell lung cancer (NSCLC). Ann Oncol. 2019;30:v619–20. https://doi.org/10.1093/annonc/mdz260.031.

    Article  Google Scholar 

  82. Tanaka S, Uchino J, Yokoi T, Kijima T, Goto Y, Suga Y, et al. Prognostic nutritional index and lung immune prognostic index as prognostic predictors for combination therapies of immune checkpoint inhibitors and cytotoxic anticancer chemotherapy for patients with advanced non-small cell lung cancer. Diagnostics. 2022;12(2). https://doi.org/10.3390/diagnostics12020423.

  83. Wang W, Huang Z, Yu Z, Zhuang W, Zheng W, Cai Z, et al. prognostic value of the lung immune prognostic index may differ in patients treated with immune checkpoint inhibitor monotherapy or combined with chemotherapy for non-small cell lung cancer. Front Oncol. 2020;10: 572853. https://doi.org/10.3389/fonc.2020.572853.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Blanc-Durand F, Auclin E, Planchard D, Aix SP, Hendriks L, Sullivan IG, et al. 17P—association of lung immune prognostic index (LIPI) with survival of first line immune checkpoint inhibitors single agent or in combination with chemotherapy in untreated advanced NSCLC patients. Ann Oncol. 2019;30:xi5. https://doi.org/10.1093/annonc/mdz447.015.

    Article  Google Scholar 

  85. Banna GL, Cortellini A, Cortinovis DL, Tiseo M, Aerts J, Barbieri F, et al. The lung immuno-oncology prognostic score (LIPS-3): a prognostic classification of patients receiving first-line pembrolizumab for PD-L1 >/= 50% advanced non-small-cell lung cancer. ESMO Open. 2021;6(2):100078. https://doi.org/10.1016/j.esmoop.2021.100078. This study validated the NLR cut-off of 4 in aNSCLC and showed the prognostic value of the lung immuno-oncology prognostic score (LIPS-3) in real-world patients with high PD-L1 aNSCLC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Banna GL, Tiseo M, Cortinovis DL, Facchinetti F, Aerts J, Baldessari C, et al. Host immune-inflammatory markers to unravel the heterogeneous outcome and assessment of patients with PD-L1 >/=50% metastatic non-small cell lung cancer and poor performance status receiving first-line immunotherapy. Thoracic Cancer. 2022;13(3):483–8. https://doi.org/10.1111/1759-7714.14256.

    Article  CAS  PubMed  Google Scholar 

  87. Banna GL, Signorelli D, Metro G, Galetta D, De Toma A, Cantale O, et al. Neutrophil-to-lymphocyte ratio in combination with PD-L1 or lactate dehydrogenase as biomarkers for high PD-L1 non-small cell lung cancer treated with first-line pembrolizumab. Transl Lung Cancer Res. 2020. https://doi.org/10.21037/tlcr-19-583.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Banna GL, Cantale O, Muthuramalingam S, Cave J, Comins C, Cortellini A, et al. Efficacy outcomes and prognostic factors from real-world patients with advanced non-small-cell lung cancer treated with first-line chemoimmunotherapy: the Spinnaker retrospective study. Int Immunopharmacol. 2022;110: 108985. https://doi.org/10.1016/j.intimp.2022.108985. This manuscript suggests SII might have better prognostic value than NLR in patients with aNSCLC treated with chemoimmunotherapy.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualisation and methodology: G.L.B. A.A. L.M.; writing—original draft preparation: all authors; writing—review and editing and supervision: G.L.B., L.M. and A.A. All authors have made substantial contributions to this review, have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Giuseppe Luigi Banna.

Ethics declarations

Conflict of Interest

G.L.B. reports personal fees from AstraZeneca, Astellas, travel and conference expenses from Janssen. A.F. reports personal fee from BMS, MSD, Astellas, Pfizer, Janssen, Roche, Boehringer Ingelheim, GSK, Bayer, outside the submitted work. M.T. reports personal fees from Novartis, Amgen, MSD, travel and conference expenses from Roche, BMS, Takeda, AstraZeneca, Eli Lilly. A.C. reports personal fees rom Roche, Astrazeneca, Novartis, MSD, BMS, EISAI, outside the submitted work. A.P. reports personal fees from Bristol Myers Squibb, AstraZeneca, Italfarma, grants from Roche, outside the submitted work. E.A. reports personal fees from Amgen, Sanofi, grants from Nuovo Soldati, outside the submitted work. L.M.: Research grant/Funding (self): Bristol Myers Squibb, Boehringer Ingelheim, Amgen, Stilla, Inivata; Advisory/Consultancy: Roche, Takeda; Honoraria (self): Bristol Myers Squibb, Takeda, Roche, AstraZeneca; Travel/Accommodation/Expenses: Bristol Myers Squibb, Takeda, Roche, AstraZeneca; Non-remunerated activity/ies: AstraZeneca. A.A. reports grants, personal fees and non-financial support from Bristol Myers Squibb, grants from Boehringer Ingelheim, Amgen, Stilla, Inivata, personal fees and non-financial support from Roche, Takeda, AstraZeneca, outside the submitted work. All the other authors report no disclosures.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Lung Cancer

Laura Mezquita and Alfredo Addeo equally contributed as last authors.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banna, G.L., Friedlaender, A., Tagliamento, M. et al. Biological Rationale for Peripheral Blood Cell–Derived Inflammatory Indices and Related Prognostic Scores in Patients with Advanced Non-Small-Cell Lung Cancer. Curr Oncol Rep 24, 1851–1862 (2022). https://doi.org/10.1007/s11912-022-01335-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11912-022-01335-8

Keywords

Navigation