Log in

Abstract

Purpose of Review

Spinal cord injury (SCI) is a major cause of morbidity and mortality, posing a significant financial burden on patients and the healthcare system. While little can be done to reverse the primary mechanical insult, minimizing secondary injury due to ischemia and inflammation and avoiding complications that adversely affect neurologic outcome represent major goals of management. This article reviews important considerations in the acute critical care management of SCI to improve outcomes.

Recent Findings

Neuroprotective agents, such as riluzole, may allow for improved neurologic recovery but require further investigation at this time. Various forms of neuromodulation, such as transcranial magnetic stimulation, are currently under investigation.

Summary

Early decompression and stabilization of SCI is recommended within 24 h of injury when indicated. Spinal cord perfusion may be optimized with a mean arterial pressure goal from a lower limit of 75-80 to an upper limit of 90-95 mmHg for 3-7 days after injury. The use of corticosteroids remains controversial; however, initiation of a 24-h infusion of methylprednisolone 5.4 mg/kg/hour within 8 h of injury has been found to improve motor scores. Attentive pulmonary and urologic care along with early mobilization can reduce in-hospital complications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Data Availability

All data used in this work was obtained from previously published literature that is publicly available.

References

  1. Eli I, Lerner DP, Ghogawala Z. Acute traumatic spinal cord injury. Neurol Clin. 2021;39(2):471–88.

  2. Mahabaleshwarkar R, Khanna R. National inpatient burden associated with spinal cord injuries in the United States. Spinal Cord. 2014;52(2):139–44.

    Article  CAS  PubMed  Google Scholar 

  3. Malekzadeh H, Golpayegani M, Ghodsi Z, Sadeghi-Naini M, Asgardoon M, Baigi V, et al. Direct cost of illness for spinal cord injury: a systematic review. Global Spine J. 2022;12(6):1267–81.

    Article  PubMed  Google Scholar 

  4. Yue JK, Winkler EA, Rick JW, Deng H, Partow CP, Upadhyayula PS, et al. Update on critical care for acute spinal cord injury in the setting of polytrauma. Neurosurg Focus FOC. 2017;43(5):E19.

    Article  Google Scholar 

  5. Ahuja CS, Wilson JR, Nori S, Kotter MRN, Druschel C, Curt A, et al. Traumatic spinal cord injury. Nat Rev Dis Primers. 2017;3(1):17018.

    Article  PubMed  Google Scholar 

  6. Hunt A, McQuillan KA. Acute management of cervical spinal cord injuries. Crit Care Nurs Clin North Am. 2023;35(2):119–28.

    Article  PubMed  Google Scholar 

  7. Fehlings MG, Hachem LD, Tetreault LA, Skelly AC, Dettori JR, Brodt ED, et al. Timing of decompressive surgery in patients with acute spinal cord injury: systematic review update. Global Spine J. 2024;14(3_suppl):38S–57S.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Fehlings MG, Tetreault LA, Hachem L, Evaniew N, Ganau M, McKenna SL, et al. An update of a clinical practice guideline for the management of patients with acute spinal cord injury: recommendations on the role and timing of decompressive surgery. Global Spine J. 2024;14(3_suppl):174S–86S.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Patek M, Stewart M. Spinal cord injury. Anaesth Intensive Care Med. 2023;24(7):406–11.

    Article  Google Scholar 

  10. Adegeest CY, Moayeri N, Muijs SPJ, Ter Wengel PV. Spinal cord injury: current trends in acute management. Brain Spine. 2024;4:102803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tetreault LA, Kwon BK, Evaniew N, Alvi MA, Skelly AC, Fehlings MG. A clinical practice guideline on the timing of surgical decompression and hemodynamic management of acute spinal cord injury and the prevention, diagnosis, and management of intraoperative spinal cord injury: introduction, rationale, and scope. Global Spine J. 2024;14(3_suppl):10s–24s.

  12. Picetti E, Demetriades AK, Catena F, Aarabi B, Abu-Zidan FM, Alves OL, et al. Early management of adult traumatic spinal cord injury in patients with polytrauma: a consensus and clinical recommendations jointly developed by the world Society of Emergency Surgery (WSES) & the European Association of Neurosurgical Societies (EANS). World J Emerg Surg. 2024;19(1):4.

  13. Lee BJ, Jeong JH. Review: steroid use in patients with acute spinal cord injury and guideline update. Korean J Neurotrauma. 2022;18(1):22–30.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Liu M, Wu W, Li H, Li S, Huang LT, Yang YQ, et al. Necroptosis, a novel type of programmed cell death, contributes to early neural cells damage after spinal cord injury in adult mice. J Spinal Cord Med. 2015;38(6):745–53.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Badhiwala JH, Ahuja CS, Fehlings MG. Time is spine: a review of translational advances in spinal cord injury. J Neurosurg Spine. 2018;30(1):1–18.

    Article  PubMed  Google Scholar 

  16. Milhorat TH, Capocelli AL Jr, Anzil AP, Kotzen RM, Milhorat RH. Pathological basis of spinal cord cavitation in syringomyelia: analysis of 105 autopsy cases. J Neurosurg. 1995;82(5):802–12.

    Article  CAS  PubMed  Google Scholar 

  17. Norenberg MD, Smith J, Marcillo A. The pathology of human spinal cord injury: defining the problems. J Neurotrauma. 2004;21(4):429–40.

    Article  PubMed  Google Scholar 

  18. Gee CM, Tsang A, Bélanger LM, Ritchie L, Ailon T, Paquette S, et al. All over the MAP: describing pressure variability in acute spinal cord injury. Spinal Cord. 2022;60(5):470–5.

    Article  PubMed  Google Scholar 

  19. Weinberg JA, Farber SH, Kalamchi LD, Brigeman ST, Bohl MA, Varda BM, et al. Mean arterial pressure maintenance following spinal cord injury: does meeting the target matter? J Trauma Acute Care Surg. 2021;90(1):97–106.

    Article  CAS  PubMed  Google Scholar 

  20. Chen XY, Wang MH, **ao X, Dong YH, Tan B, Dong HR, et al. Blood pressure variability associates with six-month outcomes in acute cervical spinal cord injury: an analysis of 105 patients. World Neurosurg 2022;168:e480-e9.

  21. Evaniew N, Davies B, Farahbakhsh F, Fehlings MG, Ganau M, Graves D, et al. Interventions to optimize spinal cord perfusion in patients with acute traumatic spinal cord injury: an updated systematic review. Global Spine J. 2024;14(3_suppl):58S–79S.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kwon BK, Tetreault LA, Martin AR, Arnold PM, Marco RAW, Newcombe VFJ, et al. A clinical practice guideline for the management of patients with acute spinal cord injury: recommendations on hemodynamic management Global Spine J 2024;14(3_suppl):187S–211S.

  23. Drotleff N, Jansen O, Weckwerth C, Aach M, Schildhauer TA, Waydhas C, et al. Pilot study: advanced haemodynamic monitoring after acute spinal cord injury-keep the pressure up? BMC Anesthesiol. 2022;22(1):277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jerome AD, Sas AR, Wang Y, Wen J, Atkinson JR, Webb A, et al. Cytokine polarized, alternatively activated bone marrow neutrophils drive axon regeneration. Nat Immunol. 2024;25:957–68.

    Article  CAS  PubMed  Google Scholar 

  25. Walters BC, Hadley MN, Hurlbert RJ, Aarabi B, Dhall SS, Gelb DE, et al. Guidelines for the management of acute cervical spine and spinal cord injuries: 2013 update. Neurosurgery. 2013;60(CN_suppl_1):82–91.

    Article  PubMed  Google Scholar 

  26. Consortium for Spinal Cord Medicine. Early acute management in adults with spinal cord injury: a clinical practice guideline for health-care professionals. J Spinal Cord Med. 2008;31(4):403–79.

    Article  Google Scholar 

  27. Altaf F, Griesdale DE, Belanger L, Ritchie L, Markez J, Ailon T, et al. The differential effects of norepinephrine and dopamine on cerebrospinal fluid pressure and spinal cord perfusion pressure after acute human spinal cord injury. Spinal Cord. 2017;55(1):33–8.

    Article  CAS  PubMed  Google Scholar 

  28. Lee Y-S, Kim K-T, Kwon BK. Hemodynamic Management of Acute Spinal Cord Injury: a literature review. Neurospine. 2021;18(1):7–14.

    Article  PubMed  Google Scholar 

  29. Streijger F, So K, Manouchehri N, Gheorghe A, Okon EB, Chan RM, et al. A direct comparison between norepinephrine and phenylephrine for augmenting spinal cord perfusion in a porcine model of spinal cord injury. J Neurotrauma. 2018;35(12):1345–57.

    Article  PubMed  Google Scholar 

  30. Readdy WJ, Whetstone WD, Ferguson AR, Talbott JF, Inoue T, Saigal R, et al. Complications and outcomes of vasopressor usage in acute traumatic central cord syndrome. J Neurosurg : Spine SPI. 2015;23(5):574–80.

    Google Scholar 

  31. Hawryluk G, Whetstone W, Saigal R, Ferguson A, Talbott J, Bresnahan J, et al. Mean arterial blood pressure correlates with neurological recovery after human spinal cord injury: analysis of high frequency physiologic data. J Neurotrauma. 2015;32(24):1958–67.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Werndle MC, Saadoun S, Phang I, Czosnyka M, Varsos GV, Czosnyka ZH, et al. Monitoring of spinal cord perfusion pressure in acute spinal cord injury: initial findings of the injured spinal cord pressure evaluation study*. Crit Care Med. 2014;42(3):646–55.

    Article  PubMed  Google Scholar 

  33. Squair JW, Gautier M, Mahe L, Soriano JE, Rowald A, Bichat A, et al. Neuroprosthetic baroreflex controls haemodynamics after spinal cord injury. Nature. 2021;590(7845):308–14.

    Article  CAS  PubMed  Google Scholar 

  34. Michenfelder JD, Milde JH. The effect of profound levels of hypothermia (below 14 degrees C) on canine cerebral metabolism. J Cereb Blood Flow Metab. 1992;12(5):877–80.

    Article  CAS  PubMed  Google Scholar 

  35. Ransom SC, Brown NJ, Pennington ZA, Lakomkin N, Mikula AL, Bydon M, et al. Hypothermia therapy for traumatic spinal cord injury: an updated review. J Clin Med. 2022;11(6):1585.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Coselli JS, LeMaire SA, Köksoy C, Schmittling ZC, Curling PE. Cerebrospinal fluid drainage reduces paraplegia after thoracoabdominal aortic aneurysm repair: results of a randomized clinical trial. J Vasc Surg. 2002;35(4):631–9.

    Article  PubMed  Google Scholar 

  37. Chen S, Smielewski P, Czosnyka M, Papadopoulos MC, Saadoun S. Continuous monitoring and visualization of optimum spinal cord perfusion pressure in patients with acute cord injury. J Neurotrauma. 2017;34(21):2941–9.

    Article  PubMed  Google Scholar 

  38. St. George's, University of London. Injured Spinal Cord Pressure Evaluation (ISCoPE). ClinicalTrials.gov identifier: NCT02721615. Updated December 3, 2021. https://clinicaltrials.gov/study/NCT02721615.

  39. Martirosyan NL, Kalani MY, Bichard WD, Baaj AA, Gonzalez LF, Preul MC, et al. Cerebrospinal fluid drainage and induced hypertension improve spinal cord perfusion after acute spinal cord injury in pigs. Neurosurgery. 2015;76(4):461–8; discussion 8–9.

  40. Yue JK, Hemmerle DD, Winkler EA, Thomas LH, Fernandez XD, Kyritsis N, et al. Clinical implementation of novel spinal cord perfusion pressure protocol in acute traumatic spinal cord injury at U.S, vol. 133. Level I Trauma Center: TRACK-SCI Study. World Neurosurgery; 2020. p. e391–e6.

    Google Scholar 

  41. University of British Columbia. Canadian-American Spinal Cord Perfusion Pressure and Biomarker Study (CASPER). ClinicalTrials.gov identifier: NCT03911492. Updated July 3, 2023. https://clinicaltrials.gov/study/NCT03911492.

  42. Kolcun JPG, Fessler RG. Letter: lumbar drain placement in acute spinal cord injury is safe: a review of available evidence. Oper Neurosurg. 2023;25(2):e119–20.

    Article  Google Scholar 

  43. Camlar M, Turk Ç, Buhur A, Oltulu F, Oren M, Senoglu M, et al. Does decompressive Duraplasty have a neuroprotective effect on spinal trauma?: an experimental study. World Neurosurg. 2019;126:e288–e94.

    Article  PubMed  Google Scholar 

  44. Kwon BK, Curt A, Belanger LM, Bernardo A, Chan D, Markez JA, et al. Intrathecal pressure monitoring and cerebrospinal fluid drainage in acute spinal cord injury: a prospective randomized trial: clinical article. J Neurosurg : Spine SPI. 2009;10(3):181–93.

    Google Scholar 

  45. Squair JW, Bélanger LM, Tsang A, Ritchie L, Mac-Thiong JM, Parent S, et al. Spinal cord perfusion pressure predicts neurologic recovery in acute spinal cord injury. Neurology. 2017;89(16):1660–7.

    Article  PubMed  Google Scholar 

  46. Theodore N, Martirosyan N, Hersh AM, Ehresman J, Ahmed AK, Danielson J, et al. Cerebrospinal fluid drainage in patients with acute spinal cord injury: a multi-center randomized controlled trial. World Neurosurg. 2023:S1878-8750(23)00846-X.

  47. Hogg FRA, Gallagher MJ, Kearney S, Zoumprouli A, Papadopoulos MC, Saadoun S. Acute spinal cord injury: monitoring lumbar cerebrospinal fluid provides limited information about the injury site. J Neurotrauma. 2020;37(9):1156–64.

    Article  PubMed  Google Scholar 

  48. Miękisiak G, Łątka D, Jarmużek P, Załuski R, Urbański W, Janusz W. Steroids in acute spinal cord injury: all but gone within 5 years. World Neurosurg. 2019;122:e467–e71.

    Article  PubMed  Google Scholar 

  49. National Clinical Guideline Centre (UK). Spinal injury: assessment and initial management. London: National Institute for health and care excellence (NICE); 2016. (NICE Guideline, No. 41.). Available from: https://www.ncbi.nlm.nih.gov/books/NBK344254/.

  50. Bracken MB, Shepard MJ, Hellenbrand KG, Collins WF, Leo LS, Freeman DF, et al. Methylprednisolone and neurological function 1 year after spinal cord injury. Results of the National Acute Spinal Cord Injury Study. J Neurosurg. 1985;63(5):704–13.

    Article  CAS  PubMed  Google Scholar 

  51. Bracken MB, Shepard MJ, Collins WF, Holford TR, Young W, Baskin DS, et al. A randomized, controlled trial of methylprednisolone or naloxone in the treatment of acute spinal-cord injury. Results of the second national acute spinal cord injury study. N Engl J Med. 1990;322(20):1405–11.

    Article  CAS  PubMed  Google Scholar 

  52. Hurlbert RJ. Methylprednisolone for acute spinal cord injury: an inappropriate standard of care. J Neurosurg. 2000;93(1 Suppl):1–7.

    CAS  PubMed  Google Scholar 

  53. Bracken MB, Shepard MJ, Holford TR, Leo-Summers L, Aldrich EF, Fazl M, et al. Administration of methylprednisolone for 24 or 48 hours or tirilazad mesylate for 48 hours in the treatment of acute spinal cord injury. Results of the third national acute spinal cord injury randomized controlled trial. National Acute Spinal Cord Injury Study JAMA. 1997;277(20):1597–604.

    CAS  PubMed  Google Scholar 

  54. Bracken MB. Steroids for acute spinal cord injury. Cochrane Database Syst Rev. 2012;1(1):Cd001046.

    PubMed  Google Scholar 

  55. Evaniew N, Dvorak M. Cochrane in CORR1: steroids for acute spinal cord injury (review). Clin Orthop Relat Res. 2016;474(1):19–24.

    Article  PubMed  Google Scholar 

  56. Fehlings MG, Tetreault LA, Wilson JR, Kwon BK, Burns AS, Martin AR, et al. A clinical practice guideline for the management of acute spinal cord injury: introduction, rationale, and scope. Global Spine J. 2017;7(3 Suppl):84s–94s.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Hejrati N, Moghaddamjou A, Pedro K, Alvi MA, Harrop JS, Guest JD, et al. Current practice of acute spinal cord injury management: a global survey of members from the AO spine. Global Spine J. 2024;14(2):546–60.

    Article  PubMed  Google Scholar 

  58. Geisler FH, Moghaddamjou A, Wilson JRF, Fehlings MG. Methylprednisolone in acute traumatic spinal cord injury: case-matched outcomes from the NASCIS2 and Sygen historical spinal cord injury studies with contemporary statistical analysis. J Neurosurg: Spine. 2023;38(5):595–606.

    PubMed  Google Scholar 

  59. Geisler FHMD, Ph.D., Dorsey FCPD, Coleman WPPD. Recovery of motor function after spinal-cord injury — a randomized, placebo-controlled trial with GM-1 ganglioside. N Engl J Med 1991;324(26):1829–1838.

  60. Geisler FH, Coleman WP, Grieco G, Poonian D. The Sygen multicenter acute spinal cord injury study. Spine (Phila Pa 1976). 2001;26(24 Suppl):S87–98.

    Article  CAS  PubMed  Google Scholar 

  61. Srinivas S, Wali AR, Pham MH. Efficacy of riluzole in the treatment of spinal cord injury: a systematic review of the literature. Neurosurgical Focus FOC. 2019;46(3):E6.

    Article  Google Scholar 

  62. Weisbrod LJ, Nilles-Melchert TT, Bergjord JR, Surdell DL. Safety and efficacy of riluzole in traumatic spinal cord injury: a systematic review with meta-analyses. Neurotrauma Rep, A meta-analysis evaluating the safety and efficacy of riluzole in acute SCI. 2024;5(1):117–27.

  63. Fehlings MG, Moghaddamjou A, Harrop JS, Stanford R, Ball J, Aarabi B, et al. Safety and efficacy of riluzole in acute spinal cord injury study (RISCIS): a multi-center, randomized, placebo-controlled, double-blinded trial. J Neurotrauma. 2023;40(17–18):1878–88.

    Article  PubMed  Google Scholar 

  64. Serag I, Abouzid M, Elmoghazy A, Sarhan K, Alsaad SA, Mohamed RG. An updated systematic review of neuroprotective agents in the treatment of spinal cord injury. Neurosurg Rev. 2024;47(1):132.

    Article  PubMed  Google Scholar 

  65. Fehlings MG, Theodore N, Harrop J, Maurais G, Kuntz C, Shaffrey CI, et al. A phase I/IIa clinical trial of a recombinant rho protein antagonist in acute spinal cord injury. J Neurotrauma. 2011;28(5):787–96.

    Article  PubMed  Google Scholar 

  66. Wang L, Gan J, Wu J, Zhou Y, Lei D. Impact of vitamin D on the prognosis after spinal cord injury: a systematic review. Frontiers in Nutrition. 2023;10:920998.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Aminmansour B, Asnaashari A, Rezvani M, Ghaffarpasand F, Amin Noorian SM, Saboori M, et al. Effects of progesterone and vitamin D on outcome of patients with acute traumatic spinal cord injury; a randomized, double-blind, placebo controlled study. J Spinal Cord Med. 2016;39(3):272–80.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Aschauer-Wallner S, Leis S, Bogdahn U, Johannesen S, Couillard-Despres S, Aigner L. Granulocyte colony-stimulating factor in traumatic spinal cord injury. Drug Discov Today. 2021;26(7):1642–55.

    Article  CAS  PubMed  Google Scholar 

  69. Koda M, Hanaoka H, Fujii Y, Hanawa M, Kawasaki Y, Ozawa Y, et al. Randomized trial of granulocyte colony-stimulating factor for spinal cord injury. Brain. 2021;144(3):789–99.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Luo M, Li YQ, Lu YF, Wu Y, Liu R, Zheng YR, et al. Exploring the potential of RhoA inhibitors to improve exercise-recoverable spinal cord injury: a systematic review and meta-analysis. J Chem Neuroanat. 2021;111:101879.

    Article  CAS  PubMed  Google Scholar 

  71. Fessler RG, Ehsanian R, Liu CY, Steinberg GK, Jones L, Lebkowski JS, et al. A phase 1/2a dose-escalation study of oligodendrocyte progenitor cells in individuals with subacute cervical spinal cord injury. J Neurosurg Spine. 2022;37(6):812–20.

    Article  PubMed  Google Scholar 

  72. Kim KD, Lee KS, Coric D, Harrop JS, Theodore N, Toselli RM. Acute implantation of a bioresorbable polymer scaffold in patients with complete thoracic spinal cord injury: 24-month follow-up from the INSPIRE study. Neurosurgery. 2022;90(6):668–75.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Hu X, Xu W, Ren Y, Wang Z, He X, Huang R, et al. Spinal cord injury: molecular mechanisms and therapeutic interventions. Signal Transduct Target Ther. 2023;8(1):245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Zimmer MB, Nantwi K, Goshgarian HG. Effect of spinal cord injury on the respiratory system: basic research and current clinical treatment options. J Spinal Cord Med. 2007;30(4):319–30.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Berlly M, Shem K. Respiratory management during the first five days after spinal cord injury. J Spinal Cord Med. 2007;30(4):309–18.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Failli V, Kopp MA, Gericke C, Martus P, Klingbeil S, Brommer B, et al. Functional neurological recovery after spinal cord injury is impaired in patients with infections. Brain. 2012;135(11):3238–50.

    Article  PubMed  Google Scholar 

  77. Kopp MA, Watzlawick R, Martus P, Failli V, Finkenstaedt FW, Chen Y, et al. Long-term functional outcome in patients with acquired infections after acute spinal cord injury. Neurology. 2017;88(9):892–900.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Bhaskar KR, Brown R, O'Sullivan DD, Melia S, Duggan M, Reid L. Bronchial mucus hypersecretion in acute quadriplegia. Macromolecular yields and glycoconjugate composition. Am Rev Respir Dis. 1991;143(3):640–8.

    Article  CAS  PubMed  Google Scholar 

  79. Dahyot-Fizelier C, Lasocki S, Kerforne T, Perrigault P-F, Geeraerts T, Asehnoune K, et al. Ceftriaxone to prevent early ventilator-associated pneumonia in patients with acute brain injury: a multicentre, randomised, double-blind, placebo-controlled, assessor-masked superiority trial. Lancet Respir Med. 2024;12(5):375–85.

    Article  CAS  PubMed  Google Scholar 

  80. Kornblith LZ, Kutcher ME, Callcut RA, Redick BJ, Hu CK, Cogbill TH, et al. Mechanical ventilation weaning and extubation after spinal cord injury: a Western trauma association multicenter study. J Trauma Acute Care Surg. 2013;75(6):1060–9. discussion 9-70.

    Article  PubMed  Google Scholar 

  81. Schreiber AF, Garlasco J, Vieira F, Lau YH, Stavi D, Lightfoot D, et al. Separation from mechanical ventilation and survival after spinal cord injury: a systematic review and meta-analysis. Ann Intensive Care. 2021;11(1):149.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Sun D, Liu K, Jian Y, Zhang Z, Zhao H. Tracheostomy in traumatic cervical spinal cord injury: early versus late tracheostomy. Clin Neurol Neurosurg. 2023;224:107577.

    Article  PubMed  Google Scholar 

  83. Chaggar R, Goetz LL, Adler J, Bhuiyan MBA, McAvoy S, Tubbs J. Management of neurogenic bladder in patients with spinal cord injuries/disorders and end stage renal disease: a case series. Spinal Cord Ser Cases. 2024;10(1):8.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Consortium for Spinal Cord Medicine. Bladder management for adults with spinal cord injury: a clinical practice guideline for health-care providers. J Spinal Cord Med. 2006;29(5):527–73.

    Google Scholar 

  85. Wang TY, Park C, Zhang H, Rahimpour S, Murphy KR, Goodwin CR, et al. Management of acute traumatic spinal cord injury: a review of the literature. Front Surg. 2021;8:698736.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Asano K, Nakamura T, Funakoshi K. Early mobilization in spinal cord injury promotes changes in microglial dynamics and recovery of motor function. IBRO Neurosci Rep. 2022;12:366–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Dionne A, Cavayas YA, Magnuson D, Richard-Denis A, Petit Y, Barthélémy D, et al. Is it safe to initiate activity-based therapy within days following traumatic spinal cord injury? Preliminary results from the PROMPT-SCI trial. J Spinal Cord Med. 2023;46(6):980–5.

    Article  CAS  PubMed  Google Scholar 

  88. Morooka Y, Kunisawa Y, Okubo Y, Araki S, Takakura Y. Effects of early mobilization within 48 hours of injury in patients with incomplete cervical spinal cord injury. J Spinal Cord Med Advanced online publication. 2024:1–9.

  89. Zhou X, Wahane S, Friedl MS, Kluge M, Friedel CC, Avrampou K, et al. Microglia and macrophages promote corralling, wound compaction and recovery after spinal cord injury via Plexin-B2. Nat Neurosci. 2020;23(3):337–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

SZ, AS, IF, AC, SS, CR, and JW wrote the main manuscript text, edited, reviewed, and approved the manuscript. JW, MK, JR, AB, FAM, and SM developed the concept, determined the included topics, edited, reviewed, and approved the manuscript.

Corresponding author

Correspondence to John V. Wainwright.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeller, S.L., Stein, A., Frid, I. et al. Critical Care of Spinal Cord Injury. Curr Neurol Neurosci Rep (2024). https://doi.org/10.1007/s11910-024-01357-8

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11910-024-01357-8

Keywords

Navigation