Log in

Interleukin 17A: Key Player in the Pathogenesis of Hypertension and a Potential Therapeutic Target

  • Inflammation and Cardiovascular Diseases (A Kirabo, Section Editor)
  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

To summarize key advances in our understanding of the role of interleukin 17A (IL-17A) in the pathogenesis of hypertension and highlight important areas for future research and clinical translation.

Recent Findings

While T helper 17 (Th17) cells are major producers of IL-17A, there are several additional innate and adaptive immune cell sources including gamma-delta T cells, innate lymphoid cells, and natural killer cells. IL-17A promotes an increase in blood pressure through multiple mechanisms including inhibiting endothelial nitric oxide production, increasing reactive oxygen species formation, promoting vascular fibrosis, and enhancing renal sodium retention and glomerular injury. IL-17A production from Th17 cells is increased by high salt conditions in vitro and in vivo. There is also emerging data linking salt, the gut microbiome, and intestinal T cell IL-17A production. Novel therapeutics targeting IL-17A signaling are approved for the treatment of autoimmune diseases and show promise in both animal models of hypertension and human studies.

Summary

Hypertensive stimuli enhance IL-17A production. IL-17A is a key mediator of renal and vascular dysfunction in hypertensive mouse models and correlates with hypertension in humans. Large randomized clinical trials are needed to determine whether targeting IL-17A might be an effective adjunct treatment for hypertension and its associated end-organ dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Collaborators GBDRF. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet. 2016;388(10053):1659–724. https://doi.org/10.1016/S0140-6736(16)31679-8.

    Article  Google Scholar 

  2. Whelton PK, Carey RM, Aronow WS, Casey DE Jr, Collins KJ, Dennison Himmelfarb C, et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: Executive Summary: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Hypertension. 2018;71(6):1269–324. https://doi.org/10.1161/HYP.0000000000000066.

    Article  CAS  PubMed  Google Scholar 

  3. • Foti K, Wang D, Appel LJ, Selvin E. Hypertension awareness, treatment, and control in US adults: trends in the hypertension control cascade by population subgroup (National Health and Nutrition Examination Survey, 1999-2016). Am J Epidemiol. 2019;188(12):2165–74. https://doi.org/10.1093/aje/kwz177Comprehensive summary of trends in hypertension awareness, treatment, and control increased from 1999-2016, with few changes after 2010. However, disparities in hypertension control are apparent between age, sex, race/ethnicity.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Fryar CD, Ostchega Y, Hales CM, Zhang G, Kruszon-Moran D. Hypertension prevalence and control among adults: United States, 2015-2016. NCHS Data Brief. 2017;(289):1–8.

  5. Elijovich F, Laffer CL, Sahinoz M, Pitzer A, Ferguson JF, Kirabo A. The gut microbiome, inflammation, and salt-sensitive hypertension. Curr Hypertens Rep. 2020;22(10):79. https://doi.org/10.1007/s11906-020-01091-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Patrick DM, Van Beusecum JP, Kirabo A. The role of inflammation in hypertension: novel concepts. Curr Opin Physiol. 2021;19:92–8. https://doi.org/10.1016/j.cophys.2020.09.016.

    Article  PubMed  Google Scholar 

  7. Madhur MS, Lob HE, McCann LA, Iwakura Y, Blinder Y, Guzik TJ, et al. Interleukin 17 promotes angiotensin II-induced hypertension and vascular dysfunction. Hypertension. 2010;55(2):500–7. doi: HYPERTENSIONAHA.109.145094. https://doi.org/10.1161/HYPERTENSIONAHA.109.145094.

    Article  CAS  PubMed  Google Scholar 

  8. Norlander AE, Saleh MA, Kamat NV, Ko B, Gnecco J, Zhu L, et al. Interleukin-17A Regulates renal sodium transporters and renal injury in angiotensin II-induced hypertension. Hypertension. 2016;68(1):167–74. https://doi.org/10.1161/HYPERTENSIONAHA.116.07493.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Caillon A, Mian MOR, Fraulob-Aquino JC, Huo KG, Barhoumi T, Ouerd S, et al. gammadelta T cells mediate angiotensin II-induced hypertension and vascular injury. Circulation. 2017;135(22):2155–62. https://doi.org/10.1161/CIRCULATIONAHA.116.027058.

    Article  CAS  PubMed  Google Scholar 

  10. Rouvier E, Luciani MF, Mattei MG, Denizot F, Golstein P. CTLA-8, cloned from an activated T cell, bearing AU-rich messenger RNA instability sequences, and homologous to a herpesvirus saimiri gene. J Immunol. 1993;150(12):5445–56.

    CAS  PubMed  Google Scholar 

  11. Iwakura Y, Ishigame H, Saijo S, Nakae S. Functional specialization of interleukin-17 family members. Immunity. 2011;34(2):149–62. https://doi.org/10.1016/j.immuni.2011.02.012.

    Article  CAS  PubMed  Google Scholar 

  12. Tesmer LA, Lundy SK, Sarkar S, Fox DA. Th17 cells in human disease. Immunol Rev. 2008;223:87–113. doi: IMR628 [pii]. https://doi.org/10.1111/j.1600-065X.2008.00628.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. ** W, Dong C. IL-17 cytokines in immunity and inflammation. Emerg Microbes Infect. 2013;2(9):e60. https://doi.org/10.1038/emi.2013.58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wei L, Laurence A, Elias KM, O’Shea JJ. IL-21 is produced by Th17 cells and drives IL-17 production in a STAT3-dependent manner. J Biol Chem. 2007;282(48):34605–10. https://doi.org/10.1074/jbc.M705100200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Huber M, Heink S, Pagenstecher A, Reinhard K, Ritter J, Visekruna A, et al. IL-17A secretion by CD8+ T cells supports Th17-mediated autoimmune encephalomyelitis. J Clin Invest. 2013;123(1):247–60. https://doi.org/10.1172/JCI63681.

    Article  CAS  PubMed  Google Scholar 

  16. Saleh MA, Norlander AE, Madhur MS. Inhibition of interleukin-17A, but not interleukin-17F, signaling lowers blood pressure, and reduces end-organ inflammation in angiotensin II–induced hypertension. JACC: Basic Transl Sci. 2016;1(7):606–16.

    Google Scholar 

  17. • Khairallah C, Chu TH, Sheridan BS. Tissue adaptations of memory and tissue-resident gamma delta T cells. Front Immunol. 2018;9:2636. https://doi.org/10.3389/fimmu.2018.02636Review on gamma-delta T cells and their integral role in maintaining epithelial and mucosal barrier integrity, tissue homeostatis, and pathogen control. In certain disease states, these cells can contribute to inflammation and disease progression.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Akitsu A, Iwakura Y. Interleukin-17-producing gammadelta T (gammadelta17) cells in inflammatory diseases. Immunology. 2018;155(4):418–26. https://doi.org/10.1111/imm.12993.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. •• Higaki A, Mahmoud AUM, Paradis P, Schiffrin EL. Role of interleukin-23/interleukin-17 axis in T-cell mediated actions in hypertension. Cardiovasc Res. 2020. https://doi.org/10.1093/cvr/cvaa257A thorough review on the IL-23/IL-17 axis in hypertension. The IL-23/IL-17 axis may offer promising therepeutics in the treatment of hypertension.

  20. Dale BL, Pandey AK, Chen Y, Smart CD, Laroumanie F, Ao M, et al. Critical role of Interleukin 21 and T follicular helper cells in hypertension and vascular dysfunction. JCI Insight. 2019;5:e129278. https://doi.org/10.1172/jci.insight.129278.

    Article  Google Scholar 

  21. Gladiator A, LeibundGut-Landmann S. Innate lymphoid cells: new players in IL-17-mediated antifungal immunity. PLoS Pathog. 2013;9(12):e1003763. https://doi.org/10.1371/journal.ppat.1003763.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nguyen H, Chiasson VL, Chatterjee P, Kopriva SE, Young KJ, Mitchell BM. Interleukin-17 causes Rho-kinase-mediated endothelial dysfunction and hypertension. Cardiovasc Res. 2013;97(4):696–704. https://doi.org/10.1093/cvr/cvs422.

    Article  CAS  PubMed  Google Scholar 

  23. Wu J, Thabet SR, Kirabo A, Trott DW, Saleh MA, **ao L, et al. Inflammation and mechanical stretch promote aortic stiffening in hypertension through activation of p38 mitogen-activated protein kinase. Circ Res. 2014;114(4):616–25. https://doi.org/10.1161/CIRCRESAHA.114.302157.

    Article  CAS  PubMed  Google Scholar 

  24. • Orejudo M, Garcia-Redondo AB, Rodrigues-Diez RR, Rodrigues-Diez R, Santos-Sanchez L, Tejera-Munoz A, et al. Interleukin-17A induces vascular remodeling of small arteries and blood pressure elevation. Clin Sci (Lond). 2020;134(5):513–27. https://doi.org/10.1042/CS20190682These studies demonstrate that IL-17A contributes to increased blood pressure through the remodeling of small mesenteric arteries and increased arterial stiffness.

    Article  CAS  Google Scholar 

  25. Schuler R, Efentakis P, Wild J, Lagrange J, Garlapati V, Molitor M, et al. T Cell-derived IL-17A induces vascular dysfunction via perivascular fibrosis formation and dysregulation of (.)NO/cGMP signaling. Oxidative Med Cell Longev. 2019;2019:6721531. https://doi.org/10.1155/2019/6721531.

    Article  CAS  Google Scholar 

  26. Xu L, Ding W, Stohl LL, Zhou XK, Azizi S, Chuang E, et al. Regulation of T helper cell responses during antigen presentation by norepinephrine-exposed endothelial cells. Immunology. 2018;154(1):104–21. https://doi.org/10.1111/imm.12871.

    Article  CAS  PubMed  Google Scholar 

  27. Loperena R, Van Beusecum JP, Itani HA, Engel N, Laroumanie F, **ao L, et al. Hypertension and increased endothelial mechanical stretch promote monocyte differentiation and activation: roles of STAT3, interleukin 6 and hydrogen peroxide. Cardiovasc Res. 2018. https://doi.org/10.1093/cvr/cvy112.

  28. Chiasson VL, Pakanati AR, Hernandez M, Young KJ, Bounds KR, Mitchell BM. Regulatory T-cell augmentation or interleukin-17 inhibition prevents calcineurin inhibitor-induced hypertension in mice. Hypertension. 2017;70(1):183–91. https://doi.org/10.1161/HYPERTENSIONAHA.117.09374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Orejudo M, Rodrigues-Diez RR, Rodrigues-Diez R, Garcia-Redondo A, Santos-Sanchez L, Randez-Garbayo J, et al. Interleukin 17A Participates in renal inflammation associated to experimental and human hypertension. Front Pharmacol. 2019;10:1015. https://doi.org/10.3389/fphar.2019.01015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rudemiller NP, Patel MB, Zhang JD, Jeffs AD, Karlovich NS, Griffiths R, et al. C-C Motif chemokine 5 attenuates angiotensin II-dependent kidney injury by limiting renal macrophage infiltration. Am J Pathol. 2016;186(11):2846–56. https://doi.org/10.1016/j.ajpath.2016.07.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Alsheikh AJ, Dasinger JH, Abais-Battad JM, Fehrenbach DJ, Yang C, Cowley AW Jr, et al. CCL2 mediates early renal leukocyte infiltration during salt-sensitive hypertension. Am J Physiol Ren Physiol. 2020;318(4):F982–F93. https://doi.org/10.1152/ajprenal.00521.2019.

    Article  CAS  Google Scholar 

  32. Marko L, Kvakan H, Park JK, Qadri F, Spallek B, Binger KJ, et al. Interferon-gamma signaling inhibition ameliorates angiotensin II-induced cardiac damage. Hypertension. 2012;60(6):1430–6. https://doi.org/10.1161/HYPERTENSIONAHA.112.199265.

    Article  CAS  PubMed  Google Scholar 

  33. Krebs CF, Lange S, Niemann G, Rosendahl A, Lehners A, Meyer-Schwesinger C, et al. Deficiency of the interleukin 17/23 axis accelerates renal injury in mice with deoxycorticosterone acetate+angiotensin ii-induced hypertension. Hypertension. 2014;63(3):565–71. https://doi.org/10.1161/HYPERTENSIONAHA.113.02620.

    Article  CAS  PubMed  Google Scholar 

  34. Kamat NV, Thabet SR, **ao L, Saleh MA, Kirabo A, Madhur MS, et al. Renal transporter activation during angiotensin-II hypertension is blunted in interferon-gamma-/- and interleukin-17A-/- mice. Hypertension. 2015;65(3):569–76. https://doi.org/10.1161/HYPERTENSIONAHA.114.04975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ellison DH. Ubiquitylation and the pathogenesis of hypertension. J Clin Invest. 2013;123(2):546–8. https://doi.org/10.1172/JCI66882.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. •• Norlander AE, Madhur MS. Inflammatory cytokines regulate renal sodium transporters: how, where, and why? Am J Physiol Ren Physiol. 2017. https://doi.org/10.1152/ajprenal.00465.2016This review summarizes how inflammatory cytokines regulate sodium transporters along the nephron.

  37. Elliott P, Dyer A, Stamler R. The INTERSALT study: results for 24 hour sodium and potassium, by age and sex. INTERSALT Co-operative Research Group. J Hum Hypertens. 1989;3(5):323–30.

    CAS  PubMed  Google Scholar 

  38. Kleinewietfeld M, Manzel A, Titze J, Kvakan H, Yosef N, Linker RA, et al. Sodium chloride drives autoimmune disease by the induction of pathogenic TH17 cells. Nature. 2013;496(7446):518–22. https://doi.org/10.1038/nature11868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wu C, Yosef N, Thalhamer T, Zhu C, **ao S, Kishi Y, et al. Induction of pathogenic TH17 cells by inducible salt-sensing kinase SGK1. Nature. 2013;496(7446):513–7. https://doi.org/10.1038/nature11984.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. •• Norlander AE, Saleh MA, Pandey AK, Itani HA, Wu J, **ao L, et al. A salt-sensing kinase in T lymphocytes, SGK1, drives hypertension and hypertensive end-organ damage. JCI Insight. 2017;2(13). https://doi.org/10.1172/jci.insight.92801This paper demonstrates a mechanism by which T cells sense salt and describes how deletion of the salt-sensing kinase SGK1 in T cells provides significant protection from hypertenive end-organ damage.

  41. • Van Beusecum JP, Barbaro NR, McDowell Z, Aden LA, **ao L, Pandey AK, et al. High salt activates CD11c(+) antigen-presenting cells via SGK (serum glucocorticoid kinase) 1 to promote renal inflammation and salt-sensitive hypertension. Hypertension. 2019;74(3):555–63. https://doi.org/10.1161/HYPERTENSIONAHA.119.12761This paper describes a salt sensing mechanism in dendritic cells and how dendritic cells contribute to the development of hypertension.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. •• Yang YH, Istomine R, Alvarez F, Al-Aubodah TA, Shi XQ, Takano T, et al. Salt Sensing by serum/glucocorticoid-regulated kinase 1 promotes Th17-like inflammatory adaptation of Foxp3(+) regulatory T cells. Cell Rep. 2020;30(5):1515–29 e4. https://doi.org/10.1016/j.celrep.2020.01.002In an SGK1-dependent manner, high salt drives Treg cells to adapt a Th17-like cell phenotype. This paper highlights the plasticity of T cells and the role of salt in inflammation.

    Article  CAS  PubMed  Google Scholar 

  43. Matthias J, Heink S, Picard F, Zeitrag J, Kolz A, Chao YY, et al. Salt generates antiinflammatory Th17 cells but amplifies pathogenicity in proinflammatory cytokine microenvironments. J Clin Invest. 2020;130(9):4587–600. https://doi.org/10.1172/JCI137786.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kopp C, Linz P, Dahlmann A, Hammon M, Jantsch J, Muller DN, et al. 23Na magnetic resonance imaging-determined tissue sodium in healthy subjects and hypertensive patients. Hypertension. 2013;61(3):635–40. https://doi.org/10.1161/HYPERTENSIONAHA.111.00566.

    Article  CAS  PubMed  Google Scholar 

  45. Machnik A, Neuhofer W, Jantsch J, Dahlmann A, Tammela T, Machura K, et al. Macrophages regulate salt-dependent volume and blood pressure by a vascular endothelial growth factor-C-dependent buffering mechanism. Nat Med. 2009;15(5):545–52. https://doi.org/10.1038/nm.1960.

    Article  CAS  Google Scholar 

  46. Rossitto G, Mary S, Chen JY, Boder P, Chew KS, Neves KB, et al. Tissue sodium excess is not hypertonic and reflects extracellular volume expansion. Nat Commun. 2020;11(1):4222. https://doi.org/10.1038/s41467-020-17820-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Douzandeh-Mobarrez B, Kariminik A. Gut Microbiota and IL-17A: physiological and Pathological Responses. Probiotics Antimicrob Proteins. 2019;11(1):1–10. https://doi.org/10.1007/s12602-017-9329-z.

    Article  CAS  PubMed  Google Scholar 

  48. Abusleme L, Moutsopoulos NM. IL-17: overview and role in oral immunity and microbiome. Oral Dis. 2017;23(7):854–65. https://doi.org/10.1111/odi.12598.

    Article  CAS  PubMed  Google Scholar 

  49. Hooper LV, Littman DR, Macpherson AJ. Interactions between the microbiota and the immune system. Science. 2012;336(6086):1268–73. https://doi.org/10.1126/science.1223490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Chu F, Shi M, Lang Y, Shen D, ** T, Zhu J, et al. Gut microbiota in multiple sclerosis and experimental autoimmune encephalomyelitis: current applications and future perspectives. Mediat Inflamm. 2018;2018:8168717. https://doi.org/10.1155/2018/8168717.

    Article  CAS  Google Scholar 

  51. Zhang X, Zhang D, Jia H, Feng Q, Wang D, Liang D, et al. The oral and gut microbiomes are perturbed in rheumatoid arthritis and partly normalized after treatment. Nat Med. 2015;21(8):895–905. https://doi.org/10.1038/nm.3914.

    Article  CAS  PubMed  Google Scholar 

  52. Sun Y, Chen Q, Lin P, Xu R, He D, Ji W, et al. Characteristics of gut microbiota in patients with rheumatoid arthritis in Shanghai, China. Front Cell Infect Microbiol. 2019;9:369. https://doi.org/10.3389/fcimb.2019.00369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. • Kim S, Goel R, Kumar A, Qi Y, Lobaton G, Hosaka K, et al. Imbalance of gut microbiome and intestinal epithelial barrier dysfunction in patients with high blood pressure. Clin Sci (Lond). 2018;132(6):701–18. https://doi.org/10.1042/CS20180087This manuscript highlights the association of intestinal barrier and microbiome dysfunction in human hypertension. Targeting the gut microbiome may serve as a potential therapeutic avenue to treat hypertension.

    Article  CAS  Google Scholar 

  54. Li J, Zhao F, Wang Y, Chen J, Tao J, Tian G, et al. Gut microbiota dysbiosis contributes to the development of hypertension. Microbiome. 2017;5(1):14. https://doi.org/10.1186/s40168-016-0222-x.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Yan Q, Gu Y, Li X, Yang W, Jia L, Chen C, et al. Alterations of the gut microbiome in hypertension. Front Cell Infect Microbiol. 2017;7:381. https://doi.org/10.3389/fcimb.2017.00381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Dan X, Mushi Z, Baili W, Han L, Enqi W, Huanhu Z, et al. Differential analysis of hypertension-associated intestinal microbiota. Int J Med Sci. 2019;16(6):872–81. https://doi.org/10.7150/ijms.29322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Karbach SH, Schonfelder T, Brandao I, Wilms E, Hormann N, Jackel S, et al. Gut microbiota promote angiotensin II-induced arterial hypertension and vascular dysfunction. J Am Heart Assoc. 2016;5(9). https://doi.org/10.1161/JAHA.116.003698.

  58. Jama HA, Kaye DM, Marques FZ. The gut microbiota and blood pressure in experimental models. Curr Opin Nephrol Hypertens. 2019;28(2):97–104. https://doi.org/10.1097/MNH.0000000000000476.

    Article  PubMed  Google Scholar 

  59. Toral M, Robles-Vera I, de la Visitacion N, Romero M, Sanchez M, Gomez-Guzman M, et al. Role of the immune system in vascular function and blood pressure control induced by faecal microbiota transplantation in rats. Acta Physiol (Oxford). 2019;227(1):e13285. https://doi.org/10.1111/apha.13285.

    Article  CAS  Google Scholar 

  60. Wilck N, Matus MG, Kearney SM, Olesen SW, Forslund K, Bartolomaeus H, et al. Salt-responsive gut commensal modulates TH17 axis and disease. Nature. 2017;551(7682):585–9. https://doi.org/10.1038/nature24628.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Itani HA, McMaster WG Jr, Saleh MA, Nazarewicz RR, Mikolajczyk TP, Kaszuba AM, et al. Activation of human T cells in hypertension: studies of humanized mice and hypertensive humans. Hypertension. 2016;68(1):123–32. https://doi.org/10.1161/HYPERTENSIONAHA.116.07237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Yao W, Sun Y, Wang X, Niu K. Elevated serum level of interleukin 17 in a population with prehypertension. J Clin Hypertens (Greenwich). 2015;17(10):770–4. https://doi.org/10.1111/jch.12612.

    Article  CAS  Google Scholar 

  63. Masenga SK, Elijovich F, Hamooya BM, Nzala S, Kwenda G, Heimburger DC, et al. Elevated eosinophils as a feature of inflammation associated with hypertension in virally suppressed people living with HIV. J Am Heart Assoc. 2020;9(4):e011450. https://doi.org/10.1161/JAHA.118.011450.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wang Z, Shi W, Liang X, Wang W, Liang J. Association of interleukin 17 / angiotensin II with refractory hypertension risk in hemodialysis patients. Afr Health Sci. 2016;16(3):766–71. https://doi.org/10.4314/ahs.v16i3.17.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Ji Q, Cheng G, Ma N, Huang Y, Lin Y, Zhou Q, et al. Circulating Th1, Th2, and Th17 levels in hypertensive patients. Dis Markers. 2017;2017:7146290. https://doi.org/10.1155/2017/7146290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. •• von Stebut E, Reich K, Thaci D, Koenig W, Pinter A, Korber A, et al. Impact of Secukinumab on endothelial dysfunction and other cardiovascular disease parameters in psoriasis patients over 52 weeks. J Invest Dermatol. 2019;139(5):1054–62. https://doi.org/10.1016/j.jid.2018.10.042Secukinumab, a monoclonal antibody against IL-17A, has shown high efficacy in treatment against psoriasis. This randomized, double-blinded, placebo-controlled trial indicates secukinumab may also have beneficial effects on cardiovascular risk through its effect on flow mediated dilation.

    Article  CAS  Google Scholar 

  67. Han L, Yang J, Wang X, Li D, Lv L, Li B. Th17 cells in autoimmune diseases. Front Med. 2015;9(1):10–9. https://doi.org/10.1007/s11684-015-0388-9.

    Article  PubMed  Google Scholar 

  68. Hueber W, Patel DD, Dryja T, Wright AM, Koroleva I, Bruin G, et al. Effects of AIN457, a fully human antibody to interleukin-17A, on psoriasis, rheumatoid arthritis, and uveitis. Sci Transl Med. 2010;2(52):52ra72. https://doi.org/10.1126/scitranslmed.3001107.

    Article  CAS  PubMed  Google Scholar 

  69. Papp KA, Langley RG, Sigurgeirsson B, Abe M, Baker DR, Konno P, et al. Efficacy and safety of secukinumab in the treatment of moderate-to-severe plaque psoriasis: a randomized, double-blind, placebo-controlled phase II dose-ranging study. Br J Dermatol. 2013;168(2):412–21. https://doi.org/10.1111/bjd.12110.

    Article  CAS  PubMed  Google Scholar 

  70. Elnabawi YA, Dey AK, Goyal A, Groenendyk JW, Chung JH, Belur AD, et al. Coronary artery plaque characteristics and treatment with biologic therapy in severe psoriasis: results from a prospective observational study. Cardiovasc Res. 2019;115(4):721–8. https://doi.org/10.1093/cvr/cvz009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meena S. Madhur.

Ethics declarations

Conflict of Interest

The authors declare no conflicts of interest relevant to this manuscript.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Inflammation and Cardiovascular Diseases

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davis, G.K., Fehrenbach, D.J. & Madhur, M.S. Interleukin 17A: Key Player in the Pathogenesis of Hypertension and a Potential Therapeutic Target. Curr Hypertens Rep 23, 13 (2021). https://doi.org/10.1007/s11906-021-01128-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11906-021-01128-7

Keywords

Navigation